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Surprise talk
(in replacement of Tommaso Dorigo)
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Unfolding in experimental
particle physics
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i.e., ill-posed linear inverse 
problems (for dummies)
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Outline

● I: Unfolding: the basics
● II: "...and then I accidentally divided by 0"
● III: "Let a hundred flowers bloom and a hundred 

schools of thought contend"
● IV: "Thou shalt not unfold"
● V: In other fields (an example)
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I: Basics

This is the most complex math that you 
need to know to understand this talk
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http://www.mathsisfun.com/


When the M meets the P, 2017 Andrea Giammanco (CP3) 6

This is an histogram

Think of it as a vector
(it can be multi-dimensional, but the math is the same)
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How we usually do analysis

CMS Collaboration (G.Krintiras, AG, et ~2000 al.), 
arXiv:1709.07411 [nucl-ex], accepted by PRL

● These are raw data
● This is not their "native" 

distribution because it is 
smeared by detector 
resolution, selection bias, 
backgrounds, etc.

● We compare data to models
● Our models must include the 

same smearing

● From the comparison we 
want to understand stuff
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How we occasionally do analysis

In some cases, useful to report some data distribution after 
correcting for the known sources of smearing:

This is what we call unfolding.
Why do we do that?
(Answer at the end, after some drama)

CMS Collaboration (M.Komm, AG, et al.), JHEP 04 (2016) 073



 9

Unfolding = matrix equation

● a (d): how much of bin 1 (2) stays in bin 1 (2)
● b (c): how much of bin 1 (2) goes to bin 2 (1)

Imagine, e.g., that you want to infer ratio of spin-up vs spin-down 
particles via a measurement of some asymmetry. You count, e.g., the 
forward-going and the backward-going particles. Response matrix is 2x2:
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It doesn't seem complicated.
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II: "... and then
I accidentally divided by 0"
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It is a trivial matrix equation (y = Ax + b), but stochastic noise 
affects y, A and b. In practice we usually maximize a likelihood 
(but that is conceptually equivalent to error propagation.)

No matter how you invert, anyway, nasty things can happen:

Why the problem is said to be 
"ill-posed"

(This is an extreme example, carefully designed for illustrative 
purposes; from G.Cowan, Conf.Proc. C0203181 (2002) 248-257)
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The last plot is supposed to be an unbiased estimate of the first.

Indeed, it is unbiased: if you run millions of simulations, the average 
in each bin does not deviate from the expected value...

Why the problem is said to be 
"ill-posed"

But in each individual simulation, some huge high-frequency 
fluctuation is swamping the shape that we would like to observe.

Analogy from electronics: we are amplifying the noise
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Back to the basics
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Back to the basics

Who needs to study math, when there are computers?
http://matrix.reshish.com/inverse.php 

http://matrix.reshish.com/inverse.php
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And then I accidentally...
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Why you still need to study math
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And why you also need some 
physics sense

Going back to my example: you want to infer ratio of spin-up vs 
spin-down via a related angular asymmetry. You count the 
forward-going and the backward-going particles.
Left: you get the direction wrong 20% of the times. Fine.
Right: you get it wrong 50% of the times. Your detector, or your 
observable, has no sensitivity to the quantity of interest!
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Approaching the singularity

Suppose that all elements of the matrix have an uncertainty of ±0.01
(you estimate from MC samples; their statistics is finite)

Anyway, this was just for illustration. In 2x2 inversion, you get into 
trouble only when the resolution of your detector is so poor that 

you would not make the measurement anyway.
Let's now consider more bins.
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Why we want to have many bins

CMS Coll. (M.Komm, AG, et al.), TOP-16-004 CMS Coll. (M.Komm, AG, et al.), in progress

The more data you have, the more you can afford to divide 
the sample in a larger number of bins, to achieve a more 

fine-grained understanding of the features in the spectrum

One bin added in an 
interesting region
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Doing math at a glance

This can be inverted This one too

This is singular This one too
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Not always so simple

This is singular: last three columns (or rows) 
are in a linear relationship

But at a glance it is not so obvious

Imagine a very large matrix; consider that it is populated 
randomly; imagine how often you can get accidentally 

close to singularity in some of its sub-matrices
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III: "Let a hundred flowers bloom,
and a hundred schools of thought contend"
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Problem is ill-posed → multiple solutions are possible

But we need to choose one! Matter of opinion?

(And physicists are good at being opinionated)
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What is to be done

Striking fact #1: in the third plot the variance of each bin is huge (orders of magnitude larger than 
the bin contents in the first and second plot), despite the fact that the author applied a maximum 
likelihood estimator, which is guaranteed to give the smallest possible variance for an unbiased 
estimator (see Kyle Cranmer's lectures last week).
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What is to be done

Usually we strive to avoid (or at least minimise) bias. 
But maybe, after all, bias is not so bad, if in the end the quadratic sum of bias and standard 
error is a reasonable number (and if you have ways to estimate the bias and account for that as 
an additional error component).
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What is to be done

Striking fact #2: the histogram is “oscillating”, each bin seems to be anti-correlated with its 
neighbours. No matter how little you know about statistics, the first time you looked at the third 
plot you understood that “it was wrong”, just because of this funny feature.
We may want to bias the unfolded shape by imposing our prejudice that it can not be so funny...
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The two big Schools:
regularization vs iteration
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Tikhonov regularization

Tikhonov

General: define a metric (‖*‖) in space of raw data

Minimizing this distance as function of t
unfold

 is the 

same as solving the equation by matrix inversion

To solve our issue (the amplification of the bin 
uncertainties), introduce a damping term:



When the M meets the P, 2017 Andrea Giammanco (CP3) 31

Damping the high frequencies

This matrix is a popular choice for regularization.
It addresses the striking fact #2: inserted in the penalty term of the distance above, it damps the 
high frequency features in the unfolded vector.

It is a sort of first derivative in a discretized space.

If you like electronics: it is a low-pass filter.
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Damping the high frequencies

This matrix is also popular in unfolding.
It also addresses the striking fact #2, because it minimizes the local curvature of our space.

It is a sort of second derivative in a discretized space.

To address both the striking facts #1 and #2, we need to play with parameter t
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How to choose the parameter t
● “Subway plot” (Matthias Komm) 

negative bin-to-bin correlations
stat. fluctuations amplified
→ oscillation

positive bin-to-bin correlations
2nd derivative dominates
→ solution pulled towards expectation

(e.g., r
i,1

 is the correlation of 

ith bin with its immediate 
neighbor, after unfolding)
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Iterative Bayesian unfolding
(or better, D'Agostini unfolding)

Bayes

(no pictures of 
D'Agostini)

Also here we want to minimize this distance:

D'Agostini (NIM A362 (1985) 487-498) reformulated the 
problem in terms of causes (true distribution, t) and 
effects (raw data, x):
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Iterative Bayesian unfolding
(or better, D'Agostini unfolding)

Bayes
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Iterative Bayesian unfolding
(or better, D'Agostini unfolding)

Bayes

The number of iterations (N) in D'Agostini's method 
plays the same role as t in Tikhonov regularization: 
N→∞ biases towards expectation, but N→0 is useless
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If hard-pressed to express an 
opinion, experts say:

Use whichever you like, but compare with the other 
as a cross-check.

If they agree: good. If they don't: you are in trouble.
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IV: "Thou shalt not unfold"
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A dedicated meeting of a large 
analysis group in CMS.
Invited speakers: four of the 
best unfolding experts in the 
Collaboration, asked to give 
recommendations. All of them 
started with the same one...
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Why you should not unfold

● With respect to an histogram of the raw data, 
one in the "unfolded space" is:
● Less sensitive to unexpected features (a discovery)
● Inferior if the goal is a precise and accurate 

extraction of a parameter of the model
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Unexpected features in data

Regularization / inversion / any 
method that cures the problem of 
high-frequency artifacts has to bias a 
bit towards expectation (= SM).
And new particles typically show up as 
high-frequency features:

● Peaks (most frequent)
● Dips
● Peak-dips (oscillations!)

(But obviously we look at raw data way 
before looking at unfolded data, so 
that's never been a problem)

Discovery of 
the bottom 

quark (1977)
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Parameter extraction

If the goal here is to extract the slope, a template fit to the raw data 
would be more precise: we could produce several MC samples with 
different values of the true slope, pass them through detector 
smearing, and check which slope agrees with the data better.

On the other hand, by unfolding, we can more easily verify that the 
relationship is truly linear, and not for example quadratic
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To compare two experiments,
and to combine them

CMS coll., arXiv:1709.05327 [hep-ex]

Very different detectors, also different selections, 
different reconstruction techniques, etc.: 

raw data are smeared very differently
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Convenient legacy
● Unfolding is an easy and unexpensive way of making 

your data useful to the relevant theory community, 
including the posterity
● Theorists can come up with new promising models after 

the experiment stopped operating
● PDF fitters need to combine distributions from several 

experiments, including old ones

● Note: growing trend to make raw data open 
(customary in astrophysics, novel for us)
● But it is not trivial for external users to use raw data 

properly, and just making them accessible demands a 
lot of resources of the Collaboration
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V: In other fields
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Most geoprospecting methods are non-linear 
inversion problems: solutions wildly degenerate, 
need strong constraints to converge, different 
assumptions lead to qualitatively different results

New method based on cosmic-ray detectors 
(muography): statistics-limited, but linear
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Checkerboard test

Simulated density 
pattern:

Seen from gravimetric inversion Seen from muographic inversion

Red: high density
Blue: low density
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Summary

● "Unfolding" is about how to invert a matrix that 
you should not invert
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Thanks for your attention

Some material stolen from:
Matthias Komm, Andreas Jung, Juan Alcaraz Maestre, Anne Barnoud, Andrea Marini
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Extra slides
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