Surprise talk
 (in replacement of Tommaso Dorigo)

Unfolding in experimental particle physics

i.e., ill-posed linear inverse problems (for dummies)

Outline

- I: Unfolding: the basics
- II: "... and then I accidentally divided by 0"
- III: "Let a hundred flowers bloom and a hundred schools of thought contend"
- IV: "Thou shalt not unfold"
- V: In other fields (an example)

I: Basics

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1}=\underset{\text { determinant }}{\frac{1}{a d-b c}}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

This is the most complex math that you need to know to understand this talk

This is an histogram

Think of it as a vector

(it can be multi-dimensional, but the math is the same)

How we usually do analysis

- These are raw data
- This is not their "native" distribution because it is smeared by detector resolution, selection bias, backgrounds, etc.
- We compare data to models
- Our models must include the same smearing
- From the comparison we want to understand stuff
CMS Collaboration (G.Krintiras, AG, et ~ 2000 al.), arXiv:1709.07411 [nucl-ex], accepted by PRL

How we occasionally do analysis

In some cases, useful to report some data distribution after correcting for the known sources of smearing:

CMS Collaboration (M.Komm, AG, et al.), JHEP 04 (2016) 073

This is what we call unfolding.
Why do we do that?
(Answer at the end, after some drama)

Unfolding = matrix equation

$$
A x=y \rightarrow x=A^{-1} y
$$

$$
\boldsymbol{V}_{\mathrm{x}}=\boldsymbol{A}^{-1} \boldsymbol{V}_{\mathrm{y}}\left(\boldsymbol{A}^{-1}\right)^{\top}
$$

$$
\boldsymbol{V}_{x}=\text { error propagation for true variable } x
$$

$$
V_{y}^{x}=\text { error of measured variable } y
$$

Imagine, e.g., that you want to infer ratio of spin-up vs spin-down particles via a measurement of some asymmetry. You count, e.g., the forward-going and the backward-going particles. Response matrix is 2×2 :

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

- a (d): how much of bin 1 (2) stays in bin 1 (2)
- b (c): how much of bin 1 (2) goes to bin 2 (1)

$A x=y \rightarrow x=A^{-1} y \quad \boldsymbol{V}_{\mathrm{x}}=\boldsymbol{A}^{-1} \boldsymbol{V}_{\mathrm{y}}\left(A^{-1}\right)^{\top}$

$\begin{array}{ll}\boldsymbol{x} & =n \text {-histogram of true variable } x \\ \boldsymbol{y} & =m \text {-histogram of measured variable } y \\ \boldsymbol{A} & =m \times n \text { response matrix }\end{array}$

$\boldsymbol{V}_{x}=$ error propagation for true variable x
$\boldsymbol{V}_{y}=$ error of measured variable y
Unfolding matrix

It doesn't seem complicated.

II: "... and then I accidentally divided by 0"

Why the problem is said to be "ill-posed"

It is a trivial matrix equation $(\mathbf{y}=\mathbf{A x + b})$, but stochastic noise affects y, A and b. In practice we usually maximize a likelihood (but that is conceptually equivalent to error propagation.)
No matter how you invert, anyway, nasty things can happen:

Fig. 2: Attempt to unfold using matrix inversion: (a) the 'true histogram', (b) the observed histogram \mathbf{n} (dashed) and corresponding expectation values $\boldsymbol{\nu}$ (solid), (c) the estimators $\hat{\boldsymbol{\mu}}$ based on equation (8).
(This is an extreme example, carefully designed for illustrative purposes; from G.Cowan, Conf.Proc. C0203181 (2002) 248-257)

Why the problem is said to be "ill-posed"

The last plot is supposed to be an unbiased estimate of the first. Indeed, it is unbiased: if you run millions of simulations, the average in each bin does not deviate from the expected value...

Fig. 2: Attempt to unfold using matrix inversion: (a) the 'true histogram', (b) the observed histogram \mathbf{n} (dashed) and corresponding expectation values $\boldsymbol{\nu}$ (solid), (c) the estimators $\hat{\boldsymbol{\mu}}$ based on equation (8).

But in each individual simulation, some huge high-frequency fluctuation is swamping the shape that we would like to observe.
Analogy from electronics: we are amplifying the noise

Back to the basics

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

determinant

Back to the basics

Who needs to study math, when there are computers? http://matrix.reshish.com/inverse.php

And then I accidentally...

Why you still need to study math

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1}=\underbrace{\frac{1}{a d-b c}}_{\text {determinant }}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

And why you also need some physics sense

Reset Fill empty cells with zero
Very detailed solution
Calculate

Going back to my example: you want to infer ratio of spin-up vs spin-down via a related angular asymmetry. You count the forward-going and the backward-going particles.
Left: you get the direction wrong 20% of the times. Fine.
Right: you get it wrong 50\% of the times. Your detector, or your observable, has no sensitivity to the quantity of interest!

Approaching the singularity

$$
\begin{aligned}
\left(\begin{array}{ll}
0.8 & 0.2 \\
0.2 & 0.8
\end{array}\right) & \longleftrightarrow\left(\begin{array}{cc}
1.33 & -0.33 \\
-0.33 & 1.33
\end{array}\right) \\
\left(\begin{array}{cc}
0.6 & 0.4 \\
0.4 & 0.6
\end{array}\right) & \longleftrightarrow\left(\begin{array}{cc}
3 & -2 \\
-2 & 3
\end{array}\right) \\
\left(\begin{array}{cc}
0.51 & 0.49 \\
0.49 & 0.51
\end{array}\right) & \longleftrightarrow\left(\begin{array}{cc}
25.5 & -24.5 \\
-24.5 & 25.5
\end{array}\right)
\end{aligned}
$$

Suppose that all elements of the matrix have an uncertainty of ± 0.01 (you estimate from MC samples; their statistics is finite)

Anyway, this was just for illustration. In 2×2 inversion, you get into trouble only when the resolution of your detector is so poor that you would not make the measurement anyway.

Let's now consider more bins.

Why we want to have many bins

CMS Coll. (M.Komm, AG, et al.), TOP-16-004

CMS Coll. (M.Komm, AG, et al.), in progress

The more data you have, the more you can afford to divide the sample in a larger number of bins, to achieve a more fine-grained understanding of the features in the spectrum

Doing math at a glance

$$
M=\left(\begin{array}{lll}
0.8 & 0.2 \\
0.2 & 0.8
\end{array}\right) \quad M=\left(\begin{array}{ccccc}
0.80 & 0.20 & 0 & 0 & 0 \\
0 & 0.20 & 0.80 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

This can be inverted

$$
M=\left(\begin{array}{ccccc}
0.80 & 0.20 & 0 & 0 & 0 \\
0.20 & 0.80 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0.5 & 0.5 \\
0 & 0 & 0 & 0.5 & 0.5
\end{array}\right)
$$

$$
M=\left(\begin{array}{ccccc}
0.80 & 0.20 & 0 & 0 & 0 \\
0.20 & 0.80 & 0 & 0 & 0 \\
0 & 0 & 0.5 & 0 & 0.5 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0.5 & 0 & 0.5
\end{array}\right)
$$

This is singular
This one too

Not always so simple

$$
M=\left(\begin{array}{ccccc}
0.80 & 0.20 & 0 & 0 & 0 \\
0.20 & 0.80 & 0 & 0 & 0 \\
0 & 0 & 0.3 & 0.2 & 0.4 \\
0 & 0 & 0.1 & 0.6 & 0.4 \\
0 & 0 & 0.4 & 0.8 & 0.8
\end{array}\right)
$$

This is singular: last three columns (or rows) are in a linear relationship

But at a glance it is not so obvious
Imagine a very large matrix; consider that it is populated randomly; imagine how often you can get accidentally close to singularity in some of its sub-matrices

III: "Let a hundred flowers bloom, and a hundred schools of thought contend"

100 Flowers Movement 1956-1957

Under the slogan "Let a Hundred Flowers Bloom and a Hundred Schools of Thought Contend," Mao actively encourages the opinions and criticisms from all walks of society, including intellectuals
(the name is a reference to the Hundred Schools of Thought period of the Warring States Period-Confucius, Lao Tze, etc).

Slide from:
http://slideplayer.com/slide/9721247/

Problem is ill-posed \rightarrow multiple solutions are possible
But we need to choose one! Matter of opinion?
(And physicists are good at being opinionated)

- Which method is more popular for unfolding?
- RegMatrix -> SVD
- TechinqueGen -> TUnfold

Mhatisto be done

Fig. 2: Attempt to unfold using matrix inversion: (a) the 'true histogram', (b) the observed histogram \mathbf{n} (dashed) and corresponding expectation values $\boldsymbol{\nu}$ (solid), (c) the estimators $\hat{\boldsymbol{\mu}}$ based on equation (8).

Striking fact \#1: in the third plot the variance of each bin is huge (orders of magnitude larger than the bin contents in the first and second plot), despite the fact that the author applied a maximum likelihood estimator, which is guaranteed to give the smallest possible variance for an unbiased estimator (see Kyle Cranmer's lectures last week).

Mhatisto be done

Fig. 2: Attempt to unfold using matrix inversion: (a) the 'true histogram', (b) the observed histogram \mathbf{n} (dashed) and corresponding expectation values $\boldsymbol{\nu}$ (solid), (c) the estimators $\hat{\boldsymbol{\mu}}$ based on equation (8).

Usually we strive to avoid (or at least minimise) bias.
But maybe, after all, bias is not so bad, if in the end the quadratic sum of bias and standard error is a reasonable number (and if you have ways to estimate the bias and account for that as an additional error component).

Mhatisto be done

Fig. 2: Attempt to unfold using matrix inversion: (a) the 'true histogram', (b) the observed histogram \mathbf{n} (dashed) and corresponding expectation values $\boldsymbol{\nu}$ (solid), (c) the estimators $\hat{\boldsymbol{\mu}}$ based on equation (8).

Striking fact \#2: the histogram is "oscillating", each bin seems to be anti-correlated with its neighbours. No matter how little you know about statistics, the first time you looked at the third plot you understood that "it was wrong", just because of this funny feature. We may want to bias the unfolded shape by imposing our prejudice that it can not be so funny...

The two big Schools: regularization vs iteration

Tikhonov regularization

General: define a metric (\|*\|) in space of raw data

$$
\left\|M \times \vec{t}_{\text {unfold }}-\vec{x}\right\|^{2}
$$

Minimizing this distance as function of $t_{\text {unfold }}$ is the same as solving the equation by matrix inversion

To solve our issue (the amplification of the bin uncertainties), introduce a damping term:

$$
\left\|M \times \vec{t}_{\text {unfold }}-\vec{x}\right\|^{2}+\tau\left\|\Gamma \times \vec{t}_{\text {unfold }}\right\|^{2}
$$

Tikhonov

Damping the high frequencies

$$
\left\|M \times \vec{t}_{\text {unfold }}-\vec{x}\right\|^{2}+\tau\left\|\Gamma \times \vec{t}_{\text {unfold }}\right\|^{2}
$$

$$
\Gamma=\left(\begin{array}{cccccc}
+1 & -1 & 0 & 0 & \cdots & \\
0 & +1 & -1 & 0 & \cdots & \\
0 & 0 & +1 & -1 & \cdots & \\
& \vdots & & & \ddots & \\
& & & 0 & +1 & -1
\end{array}\right)
$$

This matrix is a popular choice for regularization. It addresses the striking fact \#2: inserted in the penalty term of the distance above, it damps the high frequency features in the unfolded vector.

It is a sort of first derivative in a discretized space.
If you like electronics: it is a low-pass filter.

Damping the high frequencies

$$
\left\|M \times \vec{t}_{\text {unfold }}-\vec{x}\right\|^{2}+\tau\left\|\Gamma \times \vec{t}_{\text {unfold }}\right\|^{2}
$$

$$
\Gamma=\left(\begin{array}{cccccc}
-1 & +1 & 0 & 0 & \cdots & \\
+1 & -2 & +1 & 0 & \cdots & \\
0 & +1 & -2 & +1 & \cdots & \\
& \vdots & & & \ddots & \\
& & & +1 & -2 & +1 \\
& & & 0 & +1 & -1
\end{array}\right)
$$

This matrix is also popular in unfolding. It also addresses the striking fact \#2, because it minimizes the local curvature of our space.

It is a sort of second derivative in a discretized space.
To address both the striking facts \#1 and \#2, we need to play with parameter τ

How to choose the parameter τ

- "Subway plot" (Matthias Komm)

Iterative Bayesian unfolding (or better, D'Agostini unfolding)

Also here we want to minimize this distance:

$$
\left\|M \times \vec{t}_{\text {unfold }}-\vec{x}\right\|^{2}
$$

D'Agostini (NIM A362 (1985) 487-498) reformulated the problem in terms of causes (true distribution, t) and effects (raw data, x):

To stay close to the application of interest, let us state Bayes' theorem in terms of several independent causes ($\mathrm{C}_{i}, i=1,2, \cdots, n_{\mathrm{C}}$) which can produce one effect (E). Let us assume we know the initial probability of the causes $P\left(C_{i}\right)$ and the conditional probability of the i th cause to produce the effect $P\left(\mathrm{E} \mid \mathrm{C}_{i}\right)$. The Bayes formula is then

$$
\begin{equation*}
P\left(\mathrm{C}_{i} \mid \mathrm{E}\right)=\frac{P\left(\mathrm{E} \mid \mathrm{C}_{i}\right) P\left(\mathrm{C}_{i}\right)}{\sum_{i=1}^{n_{\mathrm{C}}} P\left(\mathrm{E} \mid \mathrm{C}_{l}\right) P\left(\mathrm{C}_{l}\right)} \tag{1}
\end{equation*}
$$

Bayes

(no pictures of D'Agostini)

Iterative Bayesian unfolding (or better, D'Agostini unfolding)

For example, if we consider DIS events, the effect E can be the observation of an event in a cell of the measured quantities $\left\{\Delta Q_{\text {meas }}^{2}, \Delta x_{\text {meas }}\right\}$. The causes C_{i} are then all the possible cells of the true values $\left\{\Delta Q_{\text {true }}^{2}, \Delta x_{\text {true }}\right\}_{i}$.

$$
P\left(\mathrm{C}_{i} \mid \mathrm{E}_{j}\right)=\frac{P\left(\mathrm{E}_{j} \mid \mathrm{C}_{i}\right) P_{0}\left(\mathrm{C}_{i}\right)}{\sum_{l=1}^{n_{\mathrm{C}}} P\left(\mathrm{E}_{j} \mid \mathrm{C}_{l}\right) P_{0}\left(\mathrm{C}_{l}\right)}
$$

If one observes $n(E)$ events with effect E, the expected number of events assignable to each of the causes is

Bayes $\hat{n}\left(\mathrm{C}_{i}\right)=n(\mathrm{E}) P\left(\mathrm{C}_{i} \mid \mathrm{E}\right)$.

Iterative Bayesian unfolding (or better, D'Agostini unfolding)

1) choose the initial distribution of $P_{0}(\mathrm{C})$ from the best knowledge of the process under study, and hence the initial expected number of events $n_{0}\left(\mathrm{C}_{i}\right)=P_{0}\left(\mathrm{C}_{i}\right) N_{\text {obs }} ;$ in case of complete ignorance, $\boldsymbol{P}_{0}(\mathrm{C})$ will be just a uniform distribution: $P_{0}\left(\mathrm{C}_{i}\right)=1 / n_{C}$;
2) calculate $\hat{\boldsymbol{n}}(\mathrm{C})$ and $\hat{\boldsymbol{P}}(\mathrm{C})$;
3) make a χ^{2} comparison between $\hat{n}(\mathrm{C})$ and $\boldsymbol{n}_{0}(\mathrm{C})$;
4) replace $P_{0}(\mathrm{C})$ by $\hat{P}(\mathrm{C})$, and $n_{0}(\mathrm{C})$ by $\hat{n}(\mathrm{C})$, and start again; if, after the second iteration the value of χ^{2} is "small enough", stop the iteration; otherwise go to step 2. Some criteria about the optimum number of iterations will be discussed later.

The number of iterations (N) in D'Agostini's method plays the same role as τ in Tikhonov regularization: $\mathrm{N} \rightarrow \infty$ biases towards expectation, but $\mathrm{N} \rightarrow 0$ is useless

If hard-pressed to express an opinion, experts say:

Use whichever you like, but compare with the other as a cross-check.
If they agree: good. If they don't: you are in trouble.

IV: "Thou shalt not unfold"

The agenda...

Matrix unfolding techniques

First advise on unfolding (probably useless) DO NOT DO IT :)

First advise on unfolding (probably useless) DO NOT DO IT :)

If somebody needs to know the connection with the generator level, why do not you give the "response/migration matrix", from generator to reconstructed level?

Recommendations on Unfolding

```
Contents:
    \downarrow \text { Recommendations on Unfolding}
        Unfolding How-to
            \downarrow Introduction
            General recommendations
             Method selection
             Software
            & Background subtraction and event weights
             Uncertainties
                             Statistical uncertainties from the data sample
                            &tatistical uncertainties from the MC sample used to extract the response matrix.
            Systematic uncertainties on the response matrix
                            \mathrm{ Deficiencies in the modeling of the detector response}
                            \downarrow \text { Deficiencies in the MC generator model}
                    Bias due to the regularization
                    \downarrow \text { Correlations}
            The bottom-line test
            \downarrowUnfolding checklist for CMS physics analyses
            & References
    & Page revisions
```


Unfolding How-to

This section describes our unfolding recommendations. They reflect our current best understanding and are likely to be updated as more experience is gained and new methods are developed. A part of the material presented here is based on the SMP Twiki pages [13].

We recommend to avoid unfolding when it is not deemed compulsory

Why you should not unfold

- With respect to an histogram of the raw data, one in the "unfolded space" is:
- Less sensitive to unexpected features (a discovery)
- Inferior if the goal is a precise and accurate extraction of a parameter of the model

Unexpected features in data

Regularization / inversion / any method that cures the problem of high-frequency artifacts has to bias a bit towards expectation (= SM).
And new particles typically show up as high-frequency features:

- Peaks (most frequent)
- Dips
- Peak-dips (oscillations!)
(But obviously we look at raw data way before looking at unfolded data, so that's never been a problem)

Parameter extraction

If the goal here is to extract the slope, a template fit to the raw data would be more precise: we could produce several MC samples with different values of the true slope, pass them through detector smearing, and check which slope agrees with the data better.

On the other hand, by unfolding, we can more easily verify that the relationship is truly linear, and not for example quadratic

Recommendations on Unfolding

```
Contents:
    \downarrow \text { Recommendations on Unfolding}
        Unfolding How-to
        \downarrow Introduction
            General recommendations
             Method selection
            & Software
            * Background subtraction and event weights
             Uncertainties
                             Statistical uncertainties from the data sample
                            &tatistical uncertainties from the MC sample used to extract the response matrix.
            Systematic uncertainties on the response matrix
                            \mathrm{ Deficiencies in the modeling of the detector response}
                    \downarrow \text { Deficiencies in the MC generator model}
            Bias due to the regularization
            \downarrow \text { Correlations}
            The bottom-line test
            \downarrowUnfolding checklist for CMS physics analyses
            & References
     Page revisions
```


Unfolding How-to

This section describes our unfolding recommendations. They reflect our current best understanding and are likely to be updated as more experience is gained and new methods are developed. A part of the material presented here is based on the SMP Twiki pages [13]

We recommend to avoid unfold

To compare two experiments, and to combine them

Very different detectors, also different selections, different reconstruction techniques, etc.: raw data are smeared very differently

Convenient legacy

- Unfolding is an easy and unexpensive way of making your data useful to the relevant theory community, including the posterity
- Theorists can come up with new promising models after the experiment stopped operating
- PDF fitters need to combine distributions from several experiments, including old ones
- Note: growing trend to make raw data open (customary in astrophysics, novel for us)
- But it is not trivial for external users to use raw data properly, and just making them accessible demands a lot of resources of the Collaboration

V: In other fields

What are we made of?

BRIGHTSIDE.ME

Inversion in geophysics

$$
g(\boldsymbol{m})=\boldsymbol{d}
$$

Data, eg.

- seismic wave travel times
- gravitational field of the Earth

Model, eg.:

- seismic velocity and density
- density

New method based on cosmic-ray detectors (muography): statistics-limited, but linear

Checkerboard test

Simulated density pattern:
 Red: high density Blue: low density

Seen from gravimetric inversion

Seen from muographic inversion

Summary

- "Unfolding" is about how to invert a matrix that you should not invert

Thanks for your attention

Some material stolen from:
Matthias Komm, Andreas Jung, Juan Alcaraz Maestre, Anne Barnoud, Andrea Marini

Extra slides

Comparison: Densities

