
DRAFT

CMS Physics Analysis Summary

The content of this note is intended for CMS internal use and distribution only

2009/07/03

Archive Id: 1.45

Archive Date: 2009/07/03 08:49:42

Prospects for the measurement of the single-top t -channel cross section in the muon channel with 200 pb^{-1} of CMS data at 10 TeV

The CMS Collaboration

Abstract

We report on a study aiming at an early observation of single-top events produced in the t channel in proton-proton collisions, at a centre-of-mass energy of $\sqrt{s} = 10 \text{ TeV}$, in the decay channel $t \rightarrow bW \rightarrow b\mu\nu$. A template-fit method is proposed, that takes advantage of the spin correlations of the decay products in signal events, and appears robust against several systematic effects. This article assumes the use of 200 pb^{-1} of integrated luminosity. Under these conditions, a cross section uncertainty of $\pm 35\%$ (statistical) $\pm 14\%$ (systematic) $\pm 10\%$ (luminosity) and a sensitivity of 2.7σ are expected, assuming the standard-model prediction of $\sigma(\text{single top, } t \text{ channel}) = 130 \text{ pb}$.

1 Introduction

The theory of electroweak interactions predicts three different production mechanisms for single top quarks in hadron-hadron collisions, in addition to the more abundant pair production due to the strong interaction: t channel, s channel, and tW (or W -associated). Recently the D0 and CDF experiments reported a 5σ observation of single top at the Tevatron $p\bar{p}$ collider [1, 2]. At the Large Hadron Collider (LHC) the reobservation is expected to happen first in the t -channel mode, by far the most abundant of the three at LHC energies, and with the most striking final state topology. This article treats this production mode as signal, including the other two in the definition of background, and assumes a centre-of-mass energy of $\sqrt{s} = 10$ TeV.

The t -channel events from Monte Carlo simulation used in this study have been generated with the MadGraph event generator [3]. In order to give a fair approximation of the full next-to-leading order (NLO) properties of the signal, the $2 \rightarrow 3$ diagram, corresponding to the dominant NLO contribution to the t channel, is combined with the leading order (LO) $2 \rightarrow 2$ process by a matching procedure based on Ref. [4], giving a merged sample that describes the entire phase space while avoiding double counting.

Several standard-model processes are taken into account as background to the analysis. MadGraph is used also for top-quark pair production ($t\bar{t}$), for the other single-top modes, and for the inclusive single-boson production ($W/Z + X$, where X can indicate light or heavy partons). A procedure implemented during the event generation and based on the so called “MLM prescription” [5] avoids double counting between Matrix Element and parton shower generated jets. A very similar procedure prevents double counting of the heavy flavour content of $W/Z + X$ samples. The remaining background samples, due to di-boson production (WW , WZ , ZZ) and multi-jet QCD enriched in events with muons coming from the decay of b and c quarks or long-lived hadrons, were simulated using PYTHIA [6].

All generated events undergo a full simulation of the detector response according to the CMS implementation of GEANT4 [7]. Only one pp collision per bunch crossing is simulated.

2 Event selection

The study presented here focuses on the $t \rightarrow bW \rightarrow b\mu\nu$ decay channel. All events must pass the high-level single-muon trigger requirement which includes a 15 GeV/c transverse momentum threshold and $|\eta| < 2.1$; this trigger will be available without prescaling at instantaneous luminosities up to $\approx 10^{32} \text{ cm}^{-2}\text{s}^{-1}$ or larger. Reconstructed muons with a transverse momentum $p_{T,\mu} > 20$ GeV/c within the trigger acceptance, passing additional quality criteria, are selected. The event is rejected if more than one such muon is present, and also if an electron candidate is present with tight quality selection and $p_{T,e} > 20$ GeV/c, $|\eta| < 2.4$.

We define the relative isolation variable as

$$\text{rellIso} = \frac{p_{T,\mu}}{p_{T,\mu} + \text{tkIso} + \text{caloIso}}, \quad (1)$$

where tkIso (caloIso) is the scalar sum of the transverse momenta (transverse energies) of the tracks (calorimeter deposits) in a cone of size $\Delta R = \sqrt{\Delta\eta^2 + \Delta\phi^2} < 0.3$ around the muon direction, excluding the track (calorimetric footprint) of the muon itself. Events with $\text{rellIso} > 0.95$ are selected.

Jets are defined according to the iterative cone algorithm [8] with a cone size of 0.5. We consider jets within $|\eta| < 5$ whose calibrated transverse momentum is greater than 30 GeV/c. The event

Table 1: Expected event yield with 200 pb^{-1} of data for all processes considered in the analysis, after the analysis cuts. The uncertainty was obtained from the size of the simulated samples, indicated by the integrated luminosity. The cross sections shown include branching ratios when necessary. The single-top cross section in the t channel has been calculated at 10 TeV as in Ref. [9], while the s channel and the tW channel have been rescaled from Refs. [9] and [10], respectively; the diboson (WW , WZ , ZZ) cross sections are calculated as in Ref. [11]; the $t\bar{t}$ cross section comes directly from Ref. [12]; a filter at generator level has been applied on the μ -enriched multi-jet sample, and the cross section times filter efficiency has been taken from PYTHIA; all other cross sections come from MadGraph.

Process	$\sigma \times \text{BR}[\text{pb}]$	$L [\text{fb}^{-1}]$	N_{evt} in 200 pb^{-1}
single top, t channel ($W \rightarrow l\nu, l = e, \mu, \tau$)	42.9 (NLO)	6.6	102 ± 1.8
single top, s channel ($W \rightarrow l\nu, l = e, \mu, \tau$)	1.6 (NLO)	7.5	1.8 ± 0.2
single top, tW	29 (NLO)	5.8	22.3 ± 0.9
$t\bar{t}$	414 (NLO+NLL)	2.2	136.0 ± 3.5
QCD multi-jet (μ -enriched)	121675 (LO)	0.05	12 ± 6.7
Wc ($W \rightarrow l\nu, l = e, \mu, \tau$)	1 490 (LO)	2.0	29 ± 1.7
$Wb\bar{b}$ ($W \rightarrow l\nu, l = e, \mu, \tau$)	54.2 (LO)	2.9	8.0 ± 0.7
$Wc\bar{c}$ ($W \rightarrow l\nu, l = e, \mu, \tau$)	118.8 (LO)	4.5	1.2 ± 0.2
W + light partons ($W \rightarrow l\nu, l = e, \mu, \tau$)	40 000 (LO)	0.24	12 ± 2.6
$Zb\bar{b}$ ($Z \rightarrow ll, l = e, \mu, \tau$)	44.4 (LO)	3.5	2.7 ± 0.4
$Zc\bar{c}$ ($Z \rightarrow ll, l = e, \mu, \tau$)	71.7 (LO)	5.0	0.2 ± 0.1
Z + light partons ($Z \rightarrow ll, l = e, \mu, \tau$)	3 700 (LO)	0.33	2 ± 1.2
WW	74 (LO)	2.8	0.9 ± 0.3
WZ	32 (LO)	7.4	1.2 ± 0.2
ZZ	10.5 (LO)	19.0	0.17 ± 0.04
Total Background			229 ± 8.4

⁴¹ is accepted for further analysis only if exactly two such jets were reconstructed. Furthermore,
⁴² we reject events where the distance ΔR between the muon and the closest jet is less than 0.3
⁴³ (*near-jet veto*).

⁴⁴ We apply a *track counting* (TC) b -tagging algorithm that calculates the signed 3D impact-parameter
⁴⁵ significance (IP/σ_{IP}) of all the tracks passing tight quality criteria associated to the jet, orders
⁴⁶ them by decreasing values of this observable, and defines as jet discriminator the value of
⁴⁷ IP/σ_{IP} for the second (*high-efficiency* TC) or third (*high-purity* TC) track. The event is accepted
⁴⁸ for further analysis only if exactly one of the selected jets passes a tight threshold on the high-
⁴⁹ purity TC. Since we expect most of the signal events to have only one b quark inside the Tracker
⁵⁰ acceptance ($|\eta| < 2.5$), we reject the event if the remaining jet passes a loose threshold on the
⁵¹ high-efficiency TC.

To further suppress contributions from processes where the muon does not come from a leptonically decaying W boson, we select events with $M_T > 50 \text{ GeV}/c^2$, with

$$M_T = \sqrt{(p_{T,\mu} + p_{T,\nu})^2 - (p_{x,\mu} + p_{x,\nu})^2 - (p_{y,\mu} + p_{y,\nu})^2}, \quad (2)$$

⁵² where the neutrino momentum vector is assumed equal to the calibrated transverse missing
⁵³ energy (E_T^{miss}) of the event.

⁵⁴ The expected event yield from this selection with 200 pb^{-1} of data is shown in Table 1.

55 3 QCD multi-jet background estimation

56 Estimations of the QCD multi-jet contamination from simulated data have to be considered
 57 particularly unreliable for the purposes of our analysis, because only events from specific kine-
 58 matical regions pass the selection, and tail effects are the most difficult to properly simulate.
 59 These arguments lead to the conclusion that only *in situ* data-driven estimations will give the
 60 needed confidence on the amount of this background.

We extract the size of the QCD multi-jet and signal-like contributions using the M_T shape after all other selection criteria have been applied, by parametrizing the M_T distribution as

$$F(M_T) = a \cdot S(M_T) + b \cdot B(M_T), \quad (3)$$

61 where $S(M_T)$ and $B(M_T)$ are the expected distributions for signal-like (muons coming from W
 62 decays) and QCD multi-jet events, respectively.

63 $S(M_T)$ and $B(M_T)$ are extracted from high-statistics control samples. We verified with sim-
 64 ulated events that the shape of the M_T distribution for events of a same process passing the
 65 control selections does not differ, within statistical uncertainties, from the events passing the
 66 standard selection. In order to obtain a background-enriched sample, we apply a dedicated
 67 selection that differs from the standard one by the absence of the b -tagging requirements and
 68 by an anti-isolation cut ($\text{relIso} < 0.8$). These requirements reject most of the signal-like events
 69 (single top, $W + X$, $t\bar{t}$, and in general any process with a charged lepton from an intermediate
 70 W boson) leaving a background-dominated sample. Different options have been explored for
 71 the extraction of $S(M_T)$, among which are

- 72 • the use of a W -enriched control sample, which differs from the standard selection
 73 only by the absence of b tagging;
- 74 • the use of a Z -enriched control sample, obtained with a dedicated selection requiring
 75 at least two muons with invariant mass in the range $76 < M_{\mu\mu} < 106$ GeV/c^2 , and
 76 two jets selected as in the standard selection apart from the absence of the b tagging
 77 requirements.

78 In the Z -enriched case the definition of the M_T variable is modified *ad hoc*: we rescale the
 79 momenta of the two leading muons by M_W/M_Z , we treat one of them (randomly chosen) as a
 80 neutrino, and we vectorially add its transverse momentum to E_T^{miss} . The distribution obtained
 81 in this way has a maximum at the same position as the standard M_T definition in the case of
 82 signal or $W + jets$, with minimal QCD multi-jet contamination.

83 The yields obtained with either of these signal templates are compatible with the actual count
 84 of simulated QCD multi-jet events passing the full selection. Extracting the signal-like tem-
 85 plate from the Z -enriched control sample, which is the method chosen due to its higher purity
 86 with respect to the W -enriched one, yields a prediction of 22 events in the signal region. By
 87 considering the spread between the results obtained with different signal templates, includ-
 88 ing those from simulated samples containing only signal or only $W +$ light partons events, we
 89 assign a $\pm 40\%$ systematic uncertainty to the rate of QCD multi-jet background, for an overall
 90 uncertainty of $\pm 45\%$ when considering the expected statistical uncertainty.

91 4 Top quark reconstruction

92 The first step in the reconstruction of top-quark candidates makes use of the precise knowledge
 93 of the W mass to provide a kinematic constraint, which leads to a quadratic equation in the

94 longitudinal neutrino momentum. This equation has, in general, two solutions, which can
 95 have an imaginary part (this happens when M_T is larger than the W pole mass used in the
 96 constraint); here, the imaginary component is eliminated by modifying E_T^{miss} such as to give
 97 $M_T = M_W$, still respecting the W mass constraint. When two real solutions are present, we
 98 choose the solution with the smallest absolute value.

99 A similar two-fold ambiguity presents itself when reconstructing a top-quark hypothesis, since
 100 two jets are selected. The b -tagged jet is assigned to the top-quark decay.

101 Figure 1 shows the mass of the reconstructed top quark (M_{lbb}) for events passing the full selec-
 102 tion. The observation of a maximum around the known value of the top mass in real collision
 103 data will be a strong indication of the presence of top quarks.

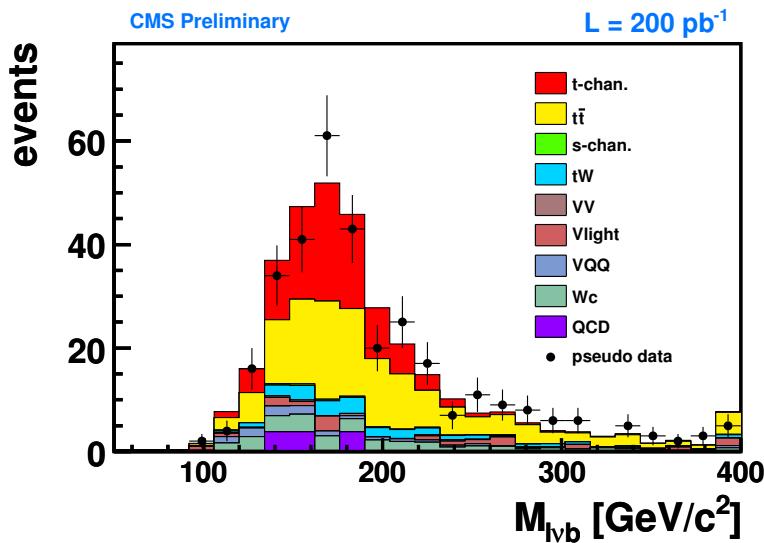


Figure 1: Reconstructed top-quark mass after the full selection. The last bin also contains events with $M_{lbb} > 400$ GeV/c^2 . Signal events are labeled as t-chan.; single top in s channel as s-chan.; VV indicates the sum of WW , WZ , and ZZ ; Vlight the sum of W and Z events in association with light partons, while in VQQ they are associated to $b\bar{b}$ or $c\bar{c}$ pairs; QCD is a short-hand notation for multi-jet QCD events.

104 5 Top quark polarization angle

A specific feature of the signal, stemming from the $V - A$ structure of the weak interaction, is the almost 100% left-handed polarization of the top quark with respect to the spin axis [13, 14]. The direction of the top-quark spin is visible in angular correlations of its decay products, which are distributed according to

$$\frac{1}{\Gamma} \frac{d\Gamma}{d \cos \theta_{lj}^*} = \frac{1}{2} (1 + A \cos \theta_{lj}^*) , \quad (4)$$

105 where θ_{lj}^* is the angle between the direction of the outgoing lepton and the spin axis, approxi-
 106 mated by the direction of the untagged jet, in the top-quark rest frame. A is the coefficient of
 107 spin asymmetry, equal to +1 for charged leptons.

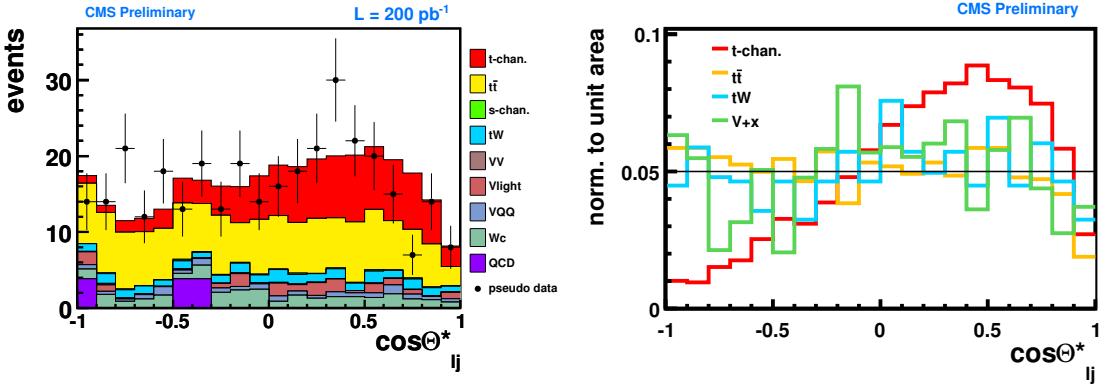


Figure 2: Cosine of the angle between charged muon and untagged jet, in the reconstructed top rest frame after the full event selection.

108 Figure 2 shows the distribution of the cosine of this angle, for events passing our event selec-
 109 tion. The dip at $\cos \theta_{l_j}^* \approx 1$ is due to the muon p_T and M_T cuts.

110 6 Signal extraction and cross section measurement

111 The cross section is determined by performing a binned likelihood fit to the $\cos \theta_{l_j}^*$ distribu-
 112 tion of the selected events. The inputs to the fit are the template distributions for signal and
 113 background. The signal template is taken from simulation, while the overall background is
 114 assumed to be flat. This assumption is verified with background-enriched control samples,
 115 finding distributions consistent with the flatness hypothesis within the statistical uncertainties.
 116 The fit is restricted to the $[-1, 0.75]$ interval in order to minimize the aforementioned kinematic
 117 effects.

118 The statistical sensitivity of the signal extraction has been determined by simulating 500 000
 119 pseudoexperiments. This procedure yields a 35% statistical uncertainty on the cross section for
 120 200 pb^{-1} of data at 10 TeV, assuming that the true value is the one predicted by the standard
 121 model, and an expected sensitivity of 2.8σ . The evolution of the sensitivity with the integrated
 122 luminosity is shown in Fig. 3.

123 7 Systematic uncertainties and robustness tests

124 The systematic uncertainties considered correspond to a level of understanding of the detector
 125 as foreseen to be achieved at the time when 200 pb^{-1} of data will be available.

126 The impact of the Parton Distribution Function (PDF) uncertainty on both the event yield and
 127 the $\cos \theta_{l_j}^*$ shapes is estimated by reweighting the selected events according to each PDF eigen-
 128 value in the CTEQ61 collection [15]. We observe that the deviations in event yield from the
 129 default PDF set are dominated, for each process, by one eigenvector in the positive and one
 130 in the negative direction; therefore, in order to simplify the estimation, only the eigenvectors
 131 giving the most extreme deviations are taken into account for each process to calculate the
 132 deviations in the extracted cross section.

133 In order to take into account the expected Jet Energy Scale (JES) uncertainty on both the event
 134 yield and the $\cos \theta_{l_j}^*$ shape, we apply a simultaneous variation of the overall JES by $\pm 10\%$ [16].
 135 Since the missing transverse energy is also corrected for jets, its uncertainty is correlated with

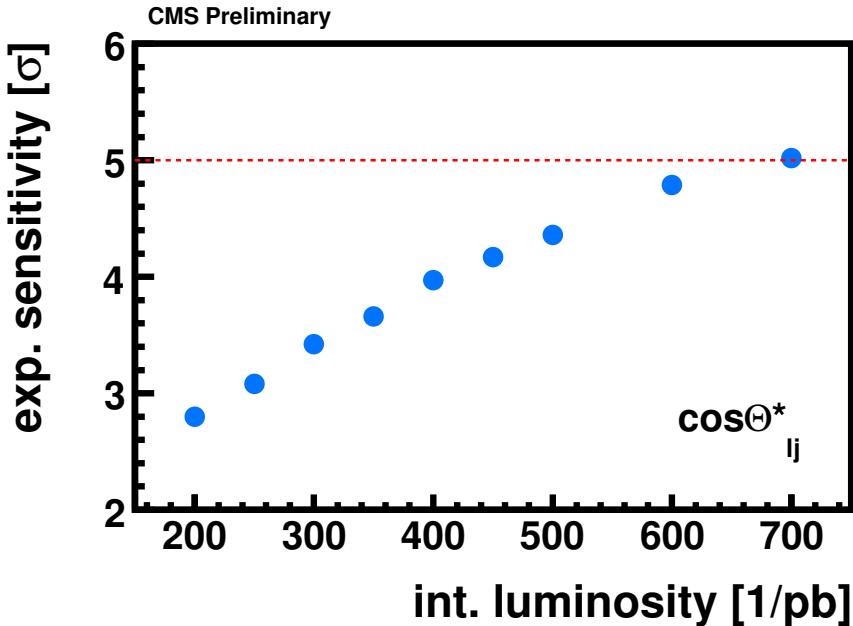


Figure 3: Evolution of the expected sensitivity with the integrated luminosity. Systematic uncertainties are not included.

136 the JES uncertainty. Here, two independent sources of E_T^{miss} systematics are considered:

137

- correlated with JES: all the jets with a transverse momentum above 20 GeV/c are
138 corrected by the same factors discussed before and E_T^{miss} is recalculated accordingly;
- uncorrelated with JES: after subtracting the jet corrections, E_T^{miss} is varied by 10%.

140 We vary the b -tagging efficiency of the track-counting algorithm at the tight (loose) working
141 point by $\pm 8.0\%$ ($\pm 8.2\%$), while the mistagging probability is varied by $\pm 18.1\%$ ($\pm 3.4\%$), ac-
142 cording to the expected performance of the b tagging algorithms [17, 18]. The corresponding
143 variations in the event yield and in the $\cos\theta_{ij}^*$ shapes are taken into account as systematic un-
144 certainties.

145 The effect on the cross section extraction is estimated by taking event yields and shapes cor-
146 responding to the extremes of the quoted ranges and repeating the likelihood fit under these
147 conditions. The result is summarized in Table 2.

148 The expected sensitivity of the analysis is calculated by performing two ensemble tests with
149 pseudo experiments, one including single top-quark events in t and s channels (hypothesis H_1)
150 and one without them (hypothesis H_0). The acceptance and shape uncertainties are incorpo-
151 rated in the pseudo experiments by randomly drawing the strength of a systematic uncertainty
152 according to a Gaussian distribution centered on zero and with a variance equal to its quoted
153 extreme systematic variance. Under the assumption that H_1 is true, we expect a 50% probabili-
154 ty to obtain a 2.8σ excess over the H_0 hypothesis when systematic effects are ignored, and 2.7σ
155 when considering the systematic uncertainties in the fit (see last column of Table 2), with 200
156 pb^{-1} of data at 10 TeV.

157 The sensitivity of our procedure to the overall background level is tested by rescaling it by
158 $\pm 50\%$. No bias is introduced in the cross section determination, and the statistical uncertainty

Table 2: Statistical and systematic uncertainties on the cross section measurement and on the expected sensitivity with 200 pb^{-1} . The absolute value of the maximum deviation is quoted as uncertainty on the cross section.

Source of uncertainty	$\Delta\sigma [\%]$	Expected sensitivity
statistical	± 35	2.8σ
b tagging	± 7.3	2.7σ
mistag	± 0.4	2.7σ
JES	± 5.5	2.7σ
MET	± 9.9	2.7σ
PDF	± 5.5	2.7σ
total	± 39	2.7σ

159 becomes 40.8% and 27.8 % for upward and downward variations respectively. In these two
 160 scenarios, we obtain expected sensitivities of 2.2σ and 3.2σ over the H_0 hypothesis, respectively.

161 An uncertainty of 10% is assumed on the luminosity determination [19].

162 Since the analysis depends on the shapes assumed for signal and background, we perform the
 163 following further tests of robustness.

164 In the analysis the signal is modeled by matching the $2 \rightarrow 2$ and $2 \rightarrow 3$ diagrams at leading
 165 order, and normalized to the NLO cross section. In order to test the effect of parton-level signal
 166 modeling, we conservatively compare the $\cos \theta_{lj}^*$ distribution of the $2 \rightarrow 2$ and the $2 \rightarrow 3$
 167 components separately, and we find a negligible difference, fully accountable by the size of our
 168 simulated samples.

169 We consider the deviations from flatness of $\cos \theta_{lj}^*$ for the main background components sep-
 170 arately. For $t\bar{t} + tW$ events the shape is taken from simulation and its flatness is tested with a
 171 $t\bar{t}$ -enriched control sample obtained from events with a second b jet (passing the loose thresh-
 172 old), for $W/Z + X$ events the shape is taken from the W -enriched control sample described
 173 in Sec. 3, and for multi-jet QCD from the QCD-enriched control sample with anti-isolation re-
 174 quirement. In the last two cases the $M_T > 50 \text{ GeV}/c^2$ requirement is added and the most
 175 central jet is treated as a b jet in the top-quark reconstruction of Sec. 4. Note that *a priori* there is
 176 no reason to expect a non-flat distribution in $\cos \theta_{lj}^*$ for these backgrounds significantly below
 177 $\cos \theta_{lj}^* \approx 1$ where acceptance cuts bias the distribution, and the small observed deviations can
 178 be accounted as statistical fluctuations.

179 As a further test of the robustness of the analysis against $t\bar{t}$ modeling we vary the PYTHIA pa-
 180 rameters that are responsible for the amount of initial and final state gluon radiation (ISR/FSR)
 181 according to the extreme values recommended in Ref. [20]. We also verify the compatibility
 182 between the $\cos \theta_{lj}^*$ shapes obtained from MadGraph and PYTHIA samples. In both cases we
 183 observe negligible effects, that can be accounted as statistical fluctuations.

184 8 Conclusions

185 The central result of the analysis presented here is that it is realistic to provide the first evidence
 186 of single-top production in a pp collider with $\approx 200 \text{ pb}^{-1}$ of data at 10 TeV.

187 After applying a selection optimized for t -channel single top events, which leaves $t\bar{t}$ as the
 188 dominant background, we achieve the needed separation of the signal from background by

189 exploiting the polarization of the top quark, which is entirely transferred to the decay products,
 190 yielding a very characteristic muon angular distribution in the top-quark rest frame.

191 After consideration of several instrumental and theoretical uncertainties we obtain an expected
 192 relative uncertainty of 35% for the cross section measurement and a sensitivity of 2.8σ when
 193 systematic effects are ignored. The inclusion of systematic uncertainties coming from PDFs
 194 and from detector knowledge contribute an additional 14%, and the uncertainty on the lumi-
 195 nosity is estimated as 10%, yielding an overall relative uncertainty of 39%, while the expected
 196 sensitivity is lowered to 2.7σ .

197 We tested the robustness of the method by applying extreme variations in the modeling of the
 198 signal and of the main backgrounds. We conclude that our results do not depend critically on
 199 the model assumptions for signal and backgrounds.

200 Several improvements are possible for this analysis. In particular, an important property of the
 201 signal that has not been exploited in the present study is its charge asymmetry in pp collisions
 202 (83.6 pb for top and 46.5 pb for anti-top production [9]). Preliminary studies indicate that the
 203 use of this feature can be very advantageous provided that the amount of $W + X$ events is
 204 under control.

205 References

- 206 [1] D0 Collaboration, “Observation of single top quark production,” arXiv:0902.4883v2.
- 207 [2] CDF Collaboration, “First Observation of Electroweak Single Top Quark Production,”
 208 arXiv:0903.0885v2.
- 209 [3] F. Maltoni and T. Stelzer, “MadEvent: Automatic event generation with MadGraph,”
 210 *JHEP* **0302** (2003) 027.
- 211 [4] E. Boos et al., “Method for simulating electroweak top-quark production events in the
 212 NLO approximation: SingleTop event generator,” *Phys. Atom. Nucl.* **69**, 8 (2006) 1317.
- 213 [5] J. Alwall et al., “Comparative study of various algorithms for the merging of parton
 214 showers and matrix elements in hadronic collisions,” *Eur. Phys. J.* **C53** (2008) 473–500,
 215 arXiv:0706.2569.
- 216 [6] T. Sjostrand et al., “PYTHIA 6.4 physics and manual,” *JHEP* **05** (2006) 026.
- 217 [7] J. Allison et al., “Geant4 developments and applications,” *IEEE Transactions on Nuclear
 218 Science* **53**, 1 (2006) 270–278.
- 219 [8] UA1 Collaboration, “Observation of jets in high transverse energy events at the CERN
 220 proton antiproton collider,” *Phys. Lett. B* **123** (1983) 115.
- 221 [9] J. Campbell, R. Ellis, and F. Tramontano, “Single top production and decay at
 222 next-to-leading order,” *Phys. Rev.* **D70** (2004) 094012.
- 223 [10] J. Campbell and F. Tramontano, “Next-to-leading order corrections to Wt production and
 224 decay,” *Nucl. Phys.* **B726** (2005) 109.
- 225 [11] J. Campbell and R. Ellis, “Vector boson pair production at the Tevatron, including all spin
 226 correlations of the boson decay products,” *Phys. Rev.* **D60** (1999) 114012.

227 [12] M. Cacciari, S. Frixione, M. Mangano, P. Nason, and G. Ridolfi, "Updated predictions for
228 the total cross sections for top and of heavier quark pairs at the Tevatron and at the
229 LHC," *JHEP* **0809** (2008) 127.

230 [13] G. Mahlon and S. Parke, "Improved Spin Basis for Angular Correlation Studies in Single
231 Top Quark Production at the Tevatron," *Phys.Rev.* **D55** (1997) 7249.

232 [14] P. Motylinski, "Angular correlations in t-channel single top production at the LHC,"
233 arXiv:0905.4754.

234 [15] J. Pumplin et al., "New Generation of Parton Distributions with Uncertainties from
235 Global QCD Analysis," *JHEP* **0207** (2002) 012.

236 [16] CMS Collaboration, "Plans for Jet Energy Corrections at CMS," *CMS PAS JME-07-002*
237 (2007).

238 [17] CMS Collaboration, "Performance Measurement of b tagging Algorithms Using Data
239 containing Muons within Jets," *CMS PAS BTV-07-001* (2007).

240 [18] CMS Collaboration, "Evaluation of $udsg$ Mistag Rate of b -tag Jets using Negative Tags,"
241 *CMS PAS BTV-07-002* (2007).

242 [19] H. Jung et al., "Proceedings of the workshop: HERA and the LHC workshop series on
243 the implications of HERA for LHC physics," arXiv:0903.3861.

244 [20] CMS Collaboration, P. Bartalini, R. Chierici, and A. D. Roeck, "Guidelines for the
245 estimation of theoretical uncertainties at the LHC," *CMS NOTE 2005/015* (2005).