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Section 2

The Higgs boson and the LHC design
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The Higgs particle

L=1
2
(∂μ h)

2−λ v2h2−(λ v h3+
1
4

λ h4)+const.

● Mass term for the new field h(x,y,z,t)
● This time it is real and positive, so it is 

actually physical: 
m

H
 = sqrt(2λv2) = sqrt(-2µ2)

● We call Higgs particle the quantum of the 
h field, which is more convenient to use 
than the φ field when we want to study the 
physical effects

● The φ field is more convenient to use when 
we want to see the symmetries of the 
lagrangian at first sight

● Made of terms in v2 and v4 with no 
dependence on the field

● Constant terms in the lagrangian 
have no physical effects: what 
matters is the eq.of motion, that 
you get by taking the derivative



Academic Year 2016-2017 Andrea Giammanco 4

Take-home messages
● The Standard Model is built from a mix of theory considerations 

(e.g., renormalizability) and experimental constraints (e.g., 
parity violation, need to explain masses, etc.)

● It was a big conceptual progress, as it explains previously 
disconnected phenomena with a small set of lagrangian terms

● However, several pieces look arbitrary, for example the values 
of the fundamental parameters are not explained (and some of 
them look "weird", e.g., the fermion mass hierarchy)

● General consensus: the SM is an incomplete theory, most 
probably the low-energy limit of the true theory
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The LHC
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https://inspirehep.net/record/1119569
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LHC goals
● Confirmation (or not) of the Brout-Englert-Higgs mechanism

● CMS&ATLAS (Higgs groups)
● Confirm the Dark Matter hypothesis / study Dark Matter

● CMS&ATLAS (SUSY and Exotica groups)
● Study the quark-gluon plasma that filled the early Universe

● ALICE; also CMS&ATLAS (Heavy Ions groups); dedicated runs
● Explain the matter/anti-matter imbalance of the Universe

● LHCb; also CMS&ATLAS (Heavy Flavours groups)
● Search for additional particles, forces, dimensions of space

● CMS&ATLAS (Exotica groups)
● Precisely measure the properties of the known particles

● CMS&ATLAS&LHCb&ALICE (Top, Electro-Weak, QCD, ... groups)
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LHC goals
● The mission of the research area called "Particle Physics" can 

be summarized very simply: finding (or at least getting closer to) 
the "true theory" of fundamental interactions

● Two main directions for finding the true theory: searches for 
new particles, and precise tests of the SM predictions

● This course is mostly about the second; although until the end 
of LHC Run-1 the Higgs boson was a "new particle"! But in a 
sense, that was still in the category of "tests of SM predictions"

● The LHC has several goals but one was used as a benchmark 
to decide its design parameters: giving a YES/NO answer to the 
question "does the SM Higgs boson exist?"

● Now that we know the answer, precise studies of its properties 
are performed because they may be the door to "new physics"
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What m
H
 range had to be probed

● Main problem: the Standard Model does not make any 
prediction about the Higgs mass

● It is given by sqrt(2λv2), but this does not help much, 
because also for λ there is no prediction

● Before LHC, the mass boundaries were:
● Theoretical upper limit from unitarity of HH→HH: O(1 TeV)
● Direct experimental limits: ~110 GeV from LEP
● Indirect experimental limits from "global fits": maximally 

model dependent (only valid if SM is true)
● Note that even after discovering a "light" Higgs, we are still 

interested in searching up to ~1 TeV. Several "beyond-SM" 
models predict more than one Higgs (e.g., 5 in SUSY)
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How to produce a Higgs boson

Gluon-gluon fusion Vector-boson fusion

Higgs-strahlung

Gluon-gluon fusion

Top(bottom)-associated
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Relationship between
coupling and cross section

+ +...σ(ttH)∝

2

∝|y
t
|2

Example, for the ttH case:

Couplings of the H are proportional to the mass of the particles it couples 
to. Masses are precisely known ⇒ in general, measuring Higgs production 
cross sections can be seen as testing the mass-coupling relationship.
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How to produce a Higgs boson
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Some little quiz
● Why is gluon-gluon 

fusion more abundant 
than vector-boson 
fusion?

● Why is ttH production 
relatively rare?

● Why is WH more 
abundant than ZH 
production?

● What is the bump at 
around 350-400 GeV?

Hints: M
W

 ~ 80 GeV, M
Z
 ~ 90 GeV, M

t
 ~ 175 GeV
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As function of collision energy

Q: explain the behavior of ttH
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Colliding pp or pp?
● The precursors of LHC as highest-

energy hadron colliders were the SppS 
at CERN and the Tevatron at Fermilab

● SppS (1981-1984): c.o.m. E = 540 GeV
● Note: in 1976-1981 and 1984-present, 

called SPS and used for fixed-target 
experiments and as injector for LEP and 
then LHC

● Tevatron (1987-2011): c.o.m. E = 1.80 
TeV, then upgraded to 1.96 TeV

● Both were pp colliders



  

How to produce antiprotons
● Some of the protons are shot against a target, producing 

a lot of hadrons; among them, some antiprotons
● Magnetic selection of antiprotons by their mass and 

charge sign
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Parton Density Functions

From https://gsalam.web.cern.ch/gsalam/repository/talks/2009-Bautzen-lecture2.pdf 

Factorization theorem:

Total cross 
section (pp)

Partonic 
cross section

Parton density functions of partons 1 and 2; 
x: fraction of proton momentum;

µ: momentum exchange

https://gsalam.web.cern.ch/gsalam/repository/talks/2009-Bautzen-lecture2.pdf
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PDF, valence vs sea

Online calculator: http://hepdata.cedar.ac.uk/pdf/pdf3.html 

http://hepdata.cedar.ac.uk/pdf/pdf3.html
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PDF, quarks vs gluon

Online calculator: http://hepdata.cedar.ac.uk/pdf/pdf3.html 

http://hepdata.cedar.ac.uk/pdf/pdf3.html
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W boson production in pp and pp
● To create a W boson (M~80 GeV) 

the main process is qq'→W
● SppS: s=(540 GeV)2 ⇒ the u,d,u,d 

quarks with x>0.15 are able to 
contribute; also u,d can be valence

● In a pp collider, at the same s: the 
u,d quarks come only from the sea

● LHC 2010-2011: s=(7 TeV)2 ⇒ 
u,d,u,d quarks with x>0.01

● The larger the c.o.m. E, the larger 
the fraction that can contribute
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H boson production
● To create a H boson (M~125 GeV) 

the main process is gg→H
● No distinction from gluon PDF 

between pp and pp collisions
● The gluon PDF is very small with 

respect to u,d quarks at large x
● Gluon-initiated processes not 

advantageous when looking for a 
heavy particle at low c.o.m. E 
(large x is selected); but they are 
dominant if the x needed for the 
process is below a few %

● No reason to collide pp; easier to 
get large luminosity with pp
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2-in-1 design at LHC
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When you collide particles of opposite charge, you can 
use the same magnetic field for both beams.

For pp, you need two beam pipes.

http://cerncourier.com/cws/article/cern/47504
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Decay width

● The more decay channels 
are accessible, the faster a 
particle will decay 

● Γ = ħ/τ (short τ ⇒ large Γ)
● Γ ∝ |amplitude|2∙(phase 

space volume)
● So even if the coupling is 

large (amplitude is large), 
decay rate can be small if 
there is little phase space 
available (e.g., m

A
~m

B
+m

C
) http://www-pnp.physics.ox.ac.uk/~barra/teaching/resonances.pdf

http://www-pnp.physics.ox.ac.uk/~barra/teaching/resonances.pdf
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Higgs width vs mass

At around M
H
 ~ 1 TeV, Γ

H
 ~ M

H
Experimental point of view: hard to 

distinguish from continuum.
Theoretical point of view: self-interaction 

becomes a strong force, perturbative 
expansion impossible.

Unitarity violation at O(1 TeV), see 
sections 2.5 & 2.6 of Gunion et al.
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Quiz: explain the changes of slope
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Higgs decays
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Relationship between
coupling and branching ratio

Γ(H→ff)∝

2

The branching ratio of final state X
i
 is BR ≡ Γ(H→X

i
)/Γ(H→anything); 

theorists obtain it by calculating Γ(H→X
i
), ∀ i; experimentalists use 

the derived formula BR = #(events H→X
i
) / #(events H→anything).

Higgs decays into fermions:

The heavier the fermion, the larger the BR.
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Higgs decay into W, Z

Proportional to g2 (and g'2)

Quiz: for m
H
 = 125 GeV (< 2 m

W
 and < 2 m

Z
), is this decay allowed? 

And what about H→tt?

Γ(H→VV)∝

2
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A more complicated case

● Both the top and the V(=W,Z) couplings contribute
● Fermion loops and boson loops have amplitudes of 

opposite sign → destructive interference in SM
● This BR is small (but luckily not negligible) for a 

combination of this fact and of the large masses 
implied in the loops, that reduce the probability

Γ(H→γγ)∝ + +

2
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Branching ratios vs mass
At high mass,
WW channel 
dominates; the 
very clean ZZ 
channel is a 
relatively strong 
signal too

125 GeV

Quiz: explain the bumps and depressions 
in WW and ZZ. Hints: as usual...
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Accelerator and dectector choices

Ensure sensitivity up to M
H
 ~ 1 TeV (approximate unitarity bound):

● Detectors must be sensitive to Higgs decays up to ~ 500 GeV ð  W 
and Z decays up to ~250 GeV ð  precise momentum measurement 
up to that scale ð  detector with large magnetic field and large radius

● Large probability of finding a parton, in the proton, able to radiate a 
particle (e.g., a W) of ~ 500 GeV ð  parton momentum of O(1 TeV) ð  
the proton beams must have multi-TeV energy
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Branching ratios @ 125 GeV

Cocktail of several channels, where the most abundant (bb) is very tough at 
LHC, and the cleanest ones (ZZ→4l and γγ) are small but not negligible
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Backgrounds

Channel gg→H→bb is the most 
abundant signal process (best 
cross section times best BR @ 
125 GeV); but continuum gg→bb 
background from QCD is 7 
orders of magnitude larger.

Quiz: why is there a discontinuity in some 
of these curves? And why not in all?
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Backgrounds

This is what 
matters when 
developing a 
trigger algorithm 
(discussed later)

This is an old plot; rates are much higher now: larger luminosity (1034 cm-2s-1); larger 
energy (13 TeV) → more particles; larger pile-up (i.e., simultaneous pp collisions)

H→ZZ→4l is 
rare @125 GeV, 
but continuum ZZ 
is rare too
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Summary
● The discovery or exclusion, and then the study of the 

Higgs boson, were a well-defined experimental goal of 
the LHC and guided its design, as well as the design 
of the multi-purpose experiments ATLAS and CMS

● To be able to discover or exclude the full range of 
realistic mass values imposed some very challenging 
choices for the accelerator and the detector

● Next: I will review the main Higgs analyses at the LHC, 
channel by channel
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Questions?
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