The discovery of W and Z

Andrea Giammanco Louvain-la-Neuve, 14 december 2009 Physique des Particules Elementaires http://cern.ch/andrea.giammanco/particules2009

Outline

- The Standard Model
 - Electro-Weak unification
 - The Higgs mechanism
- The SppS accelerator
 - Stochastic cooling
- The detectors
 - UA1
 - UA2 (in backup slides)
- The W and Z observation

Rubbia (physicist) Van der Meer (engineer)

Introducing the Standard Model

- Warning: you still don't know what is a gauge theory (and why it is so important to know what it is)
 - You will not learn it now
 - Although I will try to give a qualitative idea at the blackboard

The Standard Model

- Forces are carried by bosons: photons, W/Z, gluons, gravitons
- Matter (fermions) is composed of quarks (sensitive to QCD) and leptons (neutral to QCD), grouped in 3 generations
- What we call "Standard Model" of High Energy Physics is Electro-Weak Theory (with Higgs mechanism) + QCD
 - Gravity is not really included!

- QED is a gauge theory
- Gauge theories imply mass=0 for the force carriers (example: the photon in QED)
- At least two weak force carriers exist, both charged (W⁺ and W⁻) because weak decays change the charge:

- n→pev interpreted as n→pW^{-(*)} plus W^{-(*)}→ev

- The phenomenology of the weak interaction suggests that the range is short, which can come in a natural way if the force carriers are quite massive (Yukawa)
- So, weak interaction seemed not to be explainable with a gauge theory, at first

- Why a gauge theory is desirable: because its symmetries provide cancellations of terms that would otherwise diverge
- A non-gauge quantum field theory will always contain somewhere some divergence that you cannot cancel
 e+

Example: if you calculate the probability that this process occurs in an e^+e^- collision, you get that above some energy the probability becomes >100%, i.e. $\sigma(e^+e^- \rightarrow W^+W^-) > \sigma(e^+e^- \rightarrow anyth.)!$ This is nonsense...

 A suggestive coincidence: if you assume g~e, summing the amplitudes of these two diagrams gives a cancellation up to some higher energy:

This delays the problem to higher energy, but does not solve it...

Question: does the process on the left diverge?

 Hypothesis by Glashow, Salaam, Weinberg (1967): a new process where a new boson is present in the intermediate state (so that the sign of the amplitude is the same as for the diagram with the photon)

Experimental check

(many years later)

- If g~e, and if γ, W and Z masses are roughly equal, then there is a cancellation
- But of course these masses are not similar at all
 - photon is massless
 - W is heavy; if not, weak force would have long range
 - Z is heavy too, otherwise we would have observed it since long time, exactly as the photon
- But when you consider energies >>M_w,M_z, you get the desired cancellation and your theory has a perfect symmetry between the EM and the Weak aspects

The Higgs mechanism (= Spontaneous Symmetry Breaking)

- Basic idea: the lagrangian of a theory can have a symmetry which is not a symmetry of the ground state
- At low energy we are close to the ground state, and only at very high energy we can notice the symmetry
- Analogy: ferromagnetism versus temperature

Prediction of the W and Z masses

- Remember: $G_F \sim (g/M_W)^2$
 - To be precise: $G_F / \sqrt{2 = g^2 / 8 M_W^2}$
 - G_{F} is known with high precision from the measurement of the muon mass and lifetime: $1.16 \times 10^{-5} \text{ GeV}^{-2}$
 - The EW unification predicts $g = e \sin \theta_w$, where θ_w is the rotation between the original W⁰ and the observable Z

You will do

the math

vourselves

next year...

- $\sin^2\theta_w$ was measured by the NC/CC ratio in neutrino/nucleon experiments: $\sin^2\theta_w \sim 0.23$
- \rightarrow prediction for the W mass: ~80 GeV

• \rightarrow prediction for the Z mass: $M_z = M_w/\cos \theta_w \sim 90$

W production and detection in hadronic collisions

Leptonic decays are a clean signature against the huge hadronic background (see the techniques for e,µ detection in previous lectures)

$$\sigma(q\bar{q} \rightarrow W) = \frac{3}{4}\pi \lambda^2 \Gamma_i \Gamma / [(E - m_W)^2 + \Gamma^2/4]$$

But we are colliding protons, not quarks... What is the c.m. energy of the quark-antiquark collision?

Parton Density Functions

There is an online calculator for PDFs: http://durpdg.dur.ac.uk/hepdata/pdf3.html They give the probability of finding a parton with a certain x (= P_q/P_p) for a given Q² of the interaction

 They can be measured in Deep Inelastic Scattering with leptons and neutrinos

•
$$S_{q1,q2} = S_{p1,p2} X_{q1} X_{q2}$$

 New accelerator that collided pp at 540 GeV: to create a particle of M~80 GeV, u,d,u,d quarks with x>0.15 are able to contribute

Proton-antiproton colliders

- There was already a proton accelerator of the right energy at CERN, the SPS (still in operation nowadays...)
 - Mostly used for fixed-target experiments
- Rubbia proposed to operate it as pp collider
 - It was then used this way for several years, then returned back to its original proton-only vocation when a much larger proton-antiproton collider started operating in the US (Tevatron, still in activity)
 - Now it is also the injector for LHC

How to produce antiprotons

- Some of the protons are shot against a target, producing a lot of hadrons; among them, some antiprotons
- Magnetic selection of antiprotons by their mass and charge sign

The problem with antiprotons

- The production mechanism gives a broad momentum spectrum
- We don't want to be too selective: we need as many antiprotons as we can, so our momentum filter must have large acceptance
- We need to squeeze as much as possible, <u>simultaneously</u>:
 - the spatial distribution, in order to increase the collision probability when the antiproton beam meets the proton beam
 - the momentum distribution, otherwise some particles will be badly out of phase with the RF accelerating fields
 - this is called **phase space reduction**
- But wait, how can we do that? Liouville Theorem demonstrates that a <u>conservative force</u> (like the <u>electric and magnetic</u> fields that we can use to manipulate the beam) can not change in any way the density of the phase space

The Stochastic Cooling (1)

- At each passage of a particle, the **pick-up** gives a signal proportional to the distance of the particle from the perfect orbit
- The kicker receives this signal (before the particle arrives) and pushes the particle towards the ideal orbit with a strength proportional to {signal from the pick-up} x {gain of the amplifier}
- If the particles were very sparse and the electronics fast enough to handle them one by one, this would be the end of the story; but how can this work with 10¹² antiprotons?

The Stochastic Cooling (2)

- Any particle receives a correction which depends on its own signal, and on the other particles' signals: the system's "temperature"
 - > $T \sim \langle p_T^2 \rangle \langle p_T^2 \rangle^2$
- So, there are two competing effects from the kicker: the cooling is linear with the gain G between pick-up and kicker, while the heating goes as G²
- The <p²_T > term is dominated by the "hottest" single particle, not so for the <p₁>² term

We can tune the gain: we choose to maximize the difference in favour of cooling

With a narrow frequency distribution, very few particles are lost during the acceleration steps

ATTEN 18 de

1.72 mV

hρ

So we violate Liouville theorem. How is it possible?

- It applies only to closed system. Is this system closed?
- In some sense, we have a "Maxwell's demon" which chooses one by one the particles to be moved around
- The analogy is even more appropriate if you consider that the entropy of the beam decreases in the process

The UA1 and UA2 detectors

Different collision points in the SPS tunnel

Two different "multi-purpose" detectors (like Mark I at SPEAR), with different technological choices in order to be as complementary as possible

The UA1 detector

- Magnetic field (horizontal, 0.7 Tesla)
 - Emphasis on good momentum resolution (→high precision tracking)
 - Electromagnetic calorimeters (e/γ id.): alternated layers of <u>lead</u> (high Z) and scintillator
 - Hadronic calorimeter: alternated layers of <u>iron</u> and scintillator

Hermetic

 Muon chambers: drift chambers external to the rest of the detector

Electron/hadron discrimination

FRACTION OF ENERGY DEPOSITED

Generic final state of a W event

stolen to T. Dorigo

All charged tracks are displayed

Only $P_T > 1 \text{ GeV}$

If you could plot E in the W rest frame, you would get a gaussian centered around M_w/2
This distribution comes from the fact that we plot

 $E_{\tau} = E \sin\theta$ (remember:

the longitudinal boost of q and \overline{q} is unknown)

• How to know that the new particle is a W and not, for example, a new heavy lepton?

 This plot shows that the 2-body decay (as expected for a W) is more compatible than the 3body decay (like a new lepton: remember the μ)

Missing (transverse) momentum method

- Neutrinos have negligible interaction probability
- Ideally, by detecting all the other particles in the event, you can infer the existence (and measure the momentum) of a non-interacting particle by momentum conservation
 - This means that the detector has to be as hermetic as possible: any particle escaping (down the beam pipe or in a crack) will degrade the missing momentum determination
 - Calorimeter noise (= fake particles) also degrades it
- The missing momentum method works very well in e⁺e⁻ colliders, while in pp and pp colliders only the missing <u>transverse</u> momentum (2D projection) is used
 - (you know why)

CONSTRUCTION OF ENERGY VECTORS

(ideal detector)

$$\Delta \vec{E}_m = \Sigma \vec{E}_i$$

The method is often called of "missing energy", instead of "missing momentum", because calorimeters are used (which block all particles – apart from muons – and measure their total <u>energies</u>).

MET is the standard acronym for Missing Energy in the Transverse plane.

Question: why not using the information (momentum) from the Tracking system? Note: $\Delta p/p$ from magnetic bending is smaller than $\Delta E/E$ from calorimeter, for low p&E

From this correlation it is evident that the electron and the invisible particle(s) are produced back-to-back

Question: why aren't they distributed <u>exactly</u> along the line?

Electron transverse energy (GeV)

Measuring the W mass

 $E_{\tau}^{e} > 30 \text{ GeV}$

 $E_T^{\nu} > 30 \text{ GeV}$

UA1

26 Events

— W -→ev

---X→evv

10

5

- In absence of resolution effects and for P_T^W=0, the distributions of E_T and MET would both have a sharp edge at M_W/2
 Other useful variable, insensitive to P_T^W: the
- Other useful variable, insensitive to P_T^W: the "transverse mass" (i.e. invariant mass in the 2D transverse plane)

٥

Muonic decay

- Tracking (muons): $\sigma_p/p \sim p$
- Calorimeters (electrons): $\sigma_{E}/E \sim 1/\sqrt{E}$

At low energy, the tracking measurement is more precise; but for high energies it's the opposite. The muonic sample was not competitive for the extraction of M_{W} , but confirmed the *lepton* universality of the W: $BR(W \rightarrow ev_e) = BR(W \rightarrow \mu v_{\mu})$

If this particle is really the mediator of the weak force...

- ...it has to exhibit the most peculiar property of this force: parity violation (and charge conjugation violation)
 - Particles couple to the W only if they are left-handed (LH), i.e. helicity<0, anti-particles only if they are righthanded (RH), i.e. helicity>0
- And if it is the W of the EW theory, it must have spin 1
 - In the next slide we put these two informations together in order to see how to get a clear <u>experimental</u> signature of the nature of W

Asymmetry in the lab system

Production:

Remember: particles (u,v)are LH, i.e. have negative helicity, i.e. their spin points oppositely to the momentum; antiparticles (\overline{d},e^+) are RH: spin and momentum are parallel From the figure on the left (and drawing the equivalent figure for W⁻) you expect that positive leptons tend to follow the antiproton direction, negative leptons the proton direction

Z discovery (1)

Very clear signature: 2 high energy leptons with opposite charge, no missing energy

Conclusions

- The observation of W and Z, with the correct masses and couplings, was one of the most crucial proofs for the SM
- Why Rubbia won the Nobel: for having figured out an experiment able to give an unambiguous (yes/no) answer to the question "Do the W and Z of SM exist?"
 - Note: SM is <u>not</u> the Final Theory, but any conceivable new theory has to explain the SM as its low-energy limit
- This needed also genius from the **engineering** part (and this is why Van der Meer got a Nobel too)
- A particle physicist (including theorists) in the LHC era needs to understand the basics of hadron collider physics. The hadron collider physics of today was born with the SppS; UA1/UA2 are the grandfathers of CMS/ATLAS

Bibliography

- Textbooks:
 - Perkins, "Introduction to High Energy Physics"
 - Cahn, Goldhaber, "The experimental foundations of Particle Physics"
- Recollections:
 - http://cerncourier.com/cws/article/cern/28849
- Rubbia's and Van der Meer's Nobel Lectures:
 - http://nobelprize.org/nobel_prizes/physics/laureates/1984/

Appendix: the UA2 detector

Main differences with respect to UA1:

- No muon chambers
- Emphasis for tracking on good <u>position</u> resolution ("Vertex detector")
- Magnetic bending only in the forward direction, where the W decay asymmetry is maximal
- Less hermetic than UA1