Neural Networks:

In principle, neural networks can compute any computable
function (i.e. they can do everything a digital computer does),
under some assumptions.

In practice, NNs are especially useful for classification and
function approximation/mapping problems which are tolerant of
some imprecision, which have lots of training data available, but

to which hard and fast rules cannot easily be applied.

The basic unit is the neuron,
or “Threshold Logic Unit”:

The simplest NN is the “perceptron”,
constituted by a single neuron.

NNs can have any topology suitable to the
problem to which are tailored (bi- or
three-dimensional, layered or unlayered...)

Multi-Layer Perceptrons:

The MLP 1s an example of “feedforward”
network, i.e. the information flows only in
one direction, without cycles.

MLP’s structure consists of:

e one “input layer”: neurons have one sin-
gle input each from the environment

e one “output layer”: neurons communi-
cate their outputs to the user

e one or more “hidden layers”: neurons
have as input the outputs of the preceding
layer and give their outputs as inputs of the
following layer

Supervised learning:

For every event ¢ the user provides both the
inputs /; and the desired output 7;.

With the current weights (random, at the
beginning) the NN associates /; — O;, and a
distance or error d(O; — T;) is computed.

Usually, d(OZ' — Ti) — ’OZ — Ti’ or
d(0; = T;) = (0; = T;)?

Errors are then propagated back through
the NN, and the weights are modified
attempting to have a smaller error
at the next iteration.

Examples:
e Forecasts: the NN tries to guess the next
values of the input variables, 7; = I, 1.

o Fitting: T, = f(/;), f unknown. NN can
approximate with arbitrary accuracy any
continuous (and quasi-continuous) function.

e Classification: f is discrete (e.g. signal— 1,
background— 0).

How to train a NN
(or anything else)
to classify things:

e Show examples of both “signal” and
“background”

(to teach what a dog is, show dogs and non-
dogs).

e Examples should be as various as
possible for every class

(people in isolated amazonic tribes aren’t
able to recognize white men as humans,
since they are too different from any other
human being that they know).

e In principle, examples should be as
many as possible...

¢ ...but many examples = many learn-
ing iterations.
If available learning time is not oo, a bal-
ance has to be found.

e Don’t iterate too much

to avoid “overlearning” or “overfitting” (see
next transparency).

Overfitting:

If the training has gone too far the weights
can be optimally adapted to the data set
used to learn but the network can have poor
performance on any other analogous data set.

Solution: use two data sets.

e Training sample: the examples shown.

e Test sample: at every learning iteration,
the NN is applied to the test sample and
d(O; — T;) is computed.

Learning is stopped at the minimum of
d(O; — T;) for the test sample. This is the
point of maximum generalization for the NN.

Training algorithm:

d(O; — T;) is treated as a function of the
synaptic weights of all the neurons.

Training is a minimization problem
in the space of the weights.

The most popular training algorithms are
variants of Standard backpropagation, which
1s an NN implementation of the
heavy ball method:

the minimum is looked for by following the

gradient of the “error surface”, a(?E

Wi j
Minimization algorithms are designed
to avoid, as far as possible,
e to be trapped in a local (“false”) minimum;

e to skip the absolute (“true”) minimum.

The success of an algorithm depends on
the features of the particular error surface
given by the problem.

RPROP (Resilient Propagation):

RPROP was chosen both for its performances
in minimum finding and for its speed.

RPROP belongs to the family of
Backpropagation algorithms:

Aw;; = 10,04
0; 1s an output of unit j and an input to ¢

0, 1s a function of the outputs of the
preceding layer’s neurons:

e if ¢ is an output neuron: ¢; = 0,(1 —0;)E (£ =d(O —1T))

e if 7 is a hidden neuron: 6; = 0;(1 — 0;) >, Opwy,

1 is the learning rate.

The special feature of RPROP is the way to
OF
Wij

1s used.

update n. Only the direction of 5

It begins with an initial small update value,
and then:

e increases, if (?wEZ]() and (?wl;j] (t—1)

have angle < 180°;

e decreases otherwise.

How many hidden neurons?

Question: what 1s the optimal number of
hidden neurons for a given problem?
Answer: nobody knows.

NN literature s full of “rules of thumb”,
but their limits of application are often
tight or/and mostly unknown.

The recommended way to proceed is
by trial and error:
beginning with only one unit per layer, the
number of units is increased until the
performance of the NN ceases to improve.

When the number of units is too large, the
number of connections, and consequently the
number of weights to variate, makes the
training very slow and a larger training
sample becomes necessary to avoid
over-fitting.

How many hidden layers?

The first question is:
do we need hidden layers?

e (a) Linearly separable problem:
finding a single hyper-plane separating A /B.
A perceptron is able to do that. Output =~ 0 on the “A”

side, &~ 1 on the other side, and intermediate values in the

proximity of the separating line.

e (b) Non-linearly separable problem:

no straight line can properly separate the
two categories of events.

The introduction of a hidden layer overcomes the problem.

¢ (c) Non-linearly separable problem
with closed surface:

a second hidden layer can greatly improve
the performances of the NN.

