Il Bosone di Higgs

Di cosa parlerò:

- 1. Perchè cercarlo
- 2. Come cercarlo
- 3. **Cosa** si è trovato

Letture consigliate:

- 1. Leon Lederman, "La particella di Dio"
- 2. Gunion et al., "The Higgs Hunter's Guide"
- 3. ALEPH Collaboration, "Observation of an excess in the search for the Standard Model Higgs boson at ALEPH"

http://alephwww.cern.ch/ALPUB/paper/paper00/ 21/higgs2000.ps

"The Higgs Particle search at ALEPH"

http://alephwww.cern.ch/ALPUB/seminar/wds/Welcome.html

P. Igo-Kemenes, "Status of the Higgs boson searches", presentazione al LEPC del 3 novembre 2000

http://lephiggs.web.cern.ch/LEPHIGGS/talks/index.html

Quark	lla Massa	$2 \div 8 \text{ MeV}$	d) $5 \div 15 \text{ MeV}$	(c) $1.0 \div 1.6 \text{ GeV}$	(s) 100 ÷ 300 MeV	$170 \div 190 \text{ GeV}$	(b) 4.1 ÷ 4.5 GeV
	Partice]	(n) dn	down (d	charm (strange	an top (t)	bottom
Leptoni	Massa	511 KeV	< 5 eV	105 MeV	< 0.27 MeV	1.77 GeV	$< 31 { m MeV}$
	Particella	е	$ u_e$	π	$ u_{\mu}$	au	$ u_{ au}$

Particella	Massa	Spin
fotone (γ)	0	
+M	81 GeV	1
-M	$81 { m GeV}$	Ξ
Z^0	$91 { m GeV}$	
gluone (g)	0	Ţ
gravitone	0	2

Come produrre un Higgs:

Numero di Higgs attesi in funzione di M_H :

Come decade un Higgs:

$$74\% \ H \to b\bar{b}$$
$$7\% \ H \to \tau\bar{\tau}$$

Come cercare un evento $e^+e^- \rightarrow ZH$:

• 4 jet $(H \to b\bar{b}, Z \to q\bar{q})$

- energia mancante $(H \to b\bar{b}, Z \to \nu\bar{\nu})$
- coppia di leptoni $(H \rightarrow b\bar{b}, Z \rightarrow l^+l^-, l = e, \mu)$
- coppia di tau $(H \to \tau^+ \tau^-, Z \to q\bar{q}$ oppure $H \to b\bar{b}, Z \to \tau^+ \tau^-)$

Decadimento della Z	Decadimento dell' H	B.R.
$Z \to q\bar{q}$	$H \to q\bar{q}$	64%
$Z \to \nu \bar{\nu}$	$H \to q\bar{q}$	18%
$Z \rightarrow e^+ e^-, \mu^+ \mu^-$	$H \to q\bar{q}$	6.2%
$Z \to \tau^+ \tau^-$	$H \to q\bar{q}$	3.1%
$Z \to q\bar{q}$	$H \to \tau^+ \tau^-$	5.4%

"Locked Analysis"

- Prima della presa dati, si fissano gli algoritmi di analisi.
- In questa fase si decidono i tagli (ottimizzati con MC) e si addestrano le NN.
- L'analisi avviene online.

Il punto importante è che CHI TOCCA I TAGLI MUORE!!!

- 4 jet: $m_{REC} = m_{12} + m_{34} m_Z$ con: m_{12} massa dei jet attribuiti all'H m_{34} massa dei jet attribuiti alla Z m_Z massa nominale della Z
- \bullet Energia mancante: la massa mancante è attribuita alla Z
- 2 leptoni (non τ): m_{REC} è la massa che rincula contro i due leptoni
- 2 τ : m_{REC} è ottenuta da un fit cinematico, con m_Z imposta o ai τ o al sistema adronico

$$\begin{aligned} Q &= \frac{P(data|signal + back.)}{P(data|back.)} \equiv \frac{L_{s+b}}{L_b} \\ Q &= \frac{e^{-(s+b)}}{e^{-b}} \prod_{i=1}^{n_{obs}} \frac{sf_s(\vec{X}_i) + bf_b(\vec{X}_i)}{bf_b(\vec{X}_i)} \end{aligned}$$

b: eventi di fondo attesi **s**: eventi di segnale attesi (dipende da m_H) $\vec{X_i}$: insieme di variabili discriminanti

Tutte le analisi usano m_{REC} come variabile discriminante.

L'analisi a 4 jet con NN usa anche l'output della rete neurale.

L'analisi a energia mancante con NN e le analisi a 2 leptoni (non τ) usano come secondo discriminante l'output della NN specifica per i jet con b.

 $1 - c_b$: probabilità di ottenere $-2 \ln Q$ più piccolo di quanto osservato, nell'ipotesi di solo fondo

Una scoperta a 5σ significa $1-c_b < 5.7 \times 10^{-7}$

 $-2\ln Q = 2s - s\sum_{i=0}^{n} \ln\left(1 + \frac{sf_s(\vec{X}_i)}{bf_b(\vec{X}_i)}\right)$

Made on 30-Aug-2000 17:24:02 by konstant with DALI_F1. Filename: DC056698_007455_000830_1723.PS

Candidato *a*: $b\bar{b}b\bar{b}$, $m_{REC}^{H} = 110.0 \ GeV/c^{2}$

Candidato b: $b\bar{b}b\bar{b}$, $m_{REC}^{H} = 112.9 \ GeV/c^{2}$

(Nota: escludendo un e⁻ spurio, $m_{REC}^{H} = 114.5 \ GeV/c^{2}$)

Made on 29-Aug-2000 17:06:54 by DREVERMANN with DALL_F1. Filename: DC054698_004881_000829_1706.PS_H_CAND

Candidato c: $q\bar{q}b\bar{b}$, $m_{REC}^{H} = 114.3 \ GeV/c^{2}$

SM Results from All Experiments

 3.9σ Excess in ALEPH Data $(1 - CL_b = 6 \cdot 10^{-5})$

Combined SM Results

 $-2\ln(Q)$ Minimum at 114.9 GeV

 $1 - CL_b$ Minimum at 2.6σ Significance

SM Results from All Channels

3.2 σ 4-Jet Excess in ADLO Data $(1 - CL_b = 7 \cdot 10^{-4})$

Days in 2000

Conclusioni

- In ALEPH entrambe le analisi (tagli e NN) mostrano un eccesso di 3σ rispetto al fondo atteso
- \bullet La combinazione dei risultati di LEP mostra un eccesso a 2.6σ
- \bullet L'osservazione è compatibile con la produzione di un bosone di Higgs di 114 GeV/c^2 di massa
- Il TEVATRON potrà dirci se è una fluttuazione statistica o...