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Chapter #4
● Energy transport in a star

● Convection versus radiation
● Lifetime-mass relationship
● Death of a Sun-like star

● Exiting from the Main Sequence
● AGBs
● White dwarfs
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Convection and radiation

Why?
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Main fusion mechanisms and 
internal structure

● Fusion reaction rates depend on T: ε(PP)~T4, ε(CNO)~T17

● Classification in upper/lower/red Main Sequence:
● M>1.2M

sun
: 

– T
core

 > 18 MK; most energy from CNO cycle

– Structure: convective core, radiative envelope

● 0.25M
sun

<M<1.2M
sun

: 

– T
core

 < 18 MK; most energy from PP cycle

– Structure: radiative core, convective envelope

● 0.08M
sun

<M<0.25M
sun

: 

– Most energy from PP cycle
– Structure: fully convective

● Below 0.08M
sun

, no fusion: "brown dwarf"
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What is convection?
● It is an adiabatic movement of matter

● Think about a bubble of liquid that for some reason has a 
different T than the surrounding liquid, therefore expands, 
and floats up

● Adiabatic means that there is no energy exchange with 
surrounding; this can happen if the bubble rises too fast to 
thermalize

● But in the following we will also assume that it is slow 
enough to reach pressure equilibrium, i.e., v<<v

sound
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When convection?
When radiation?

● Radiation dominates when it is a more efficient mechanism 
for energy transport than convection

● The third famous energy transport mechanism, conduction, 
is negligible for a gas

● Calculation starts by estimating the temperature gradient 
dT/dr under the assumption that only radiation happens: 
(dT/dr)

rad

● Then the Schwartzschild criterion tells you if the system is 
stable against convection or not
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Temperature gradient by radiation
● The "free path" of a particle (here a photon) in a medium (here 

the star's gas) is the average distance that it manages to travel 
without interacting

● We can write l
free

 = 1/(κρ), where κ is called "coefficient of 
opacity" (units: m2/kg)

● Sun is very opaque: l
free

~1 cm

● Take two small volumes,

separated by O(l
free

)

● As usual, assume a Black Body
● Energy flux goes like T4
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Temperature gradient by radiation

F=σ(T+δT )4−σT 4≈4σT 3 δT

δT
l

≈−
dT
dr

L=4 π r2 F=−16π r2 σT 3

κρ
dT
dr
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Schwartzschild criterion (1)
● How large must be the temperature gradient (dT/dr) 

for convection to be the dominant phenomenon?
● Consider bubble in equilibrium with surrounding

● Both bubble and surrounding have ρ
1
, T

1
, P

1

● Imagine a small perturbation in temperature, while 
keeping pressure equilibrium

● T
1
'>T

1
 then requires ρ

1
'<ρ

1

● Archimedes' principle pushes the bubble up

● It will reach a new place with ρ
2
, T

2
, P

2

● After adiabatic expansion, pressure equilibrium 
P

*
=P

2
, but ρ

*
 is not necessarily equal to ρ

2

● If ρ
*
<ρ

2
, bubble continues to raise: convection wins

Image from
http://www.star.ucl.ac.uk/~ljs/

3c34/convection.pdf
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Schwartzschild criterion (2)
● Change in internal density ∆ρ

i
, vs change in surrounding ∆ρ

s

● Convection does not occur if:

● We assumed pressure equilibrium: P=const ⇒ ρT=const
● Surrounding is kept in equilibrium by radiation; ad: adiabatic
● To have stability against convection, radiative gradient must be 

smaller than adiabatic gradient
● Rewrite formula in a different way:

● Here we assumed pressure equilibrium with surrounding at all 
depths (implies v<<v

sound
), hence dP/dr is the same
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Schwartzschild criterion (3)
● For an adiabatic gas:

● Adiabatic coefficient: γ = C
p
/C

v
 (specific heats C=dQ/dT at 

constant pressure or volume)
● For a perfect monoatomic gas which is completely ionized or 

completely neutral: γ = 5/3
● Combining these two equations:

● Schwartschild's criterion for stability against convection:

or

P∝ργ P∝ρT
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When does convection dominate?
● Use the relationship that we had found for radiation:

● At every inner radius r:

● Convection dominates where:
● Opacity (κ) is large; κ~1/T, and small stars are cold enough 

that their envelopes are opaque enough to cause convection
● L(r) is large; for example, core of large stars is hot enough 

for CNO, which has very strong output

L(r) is local luminosity, 
etc.∣dT (r )

dr ∣rad∝ κ(T )ρ(r )L(r )
r 2T 3(r )

L=4 π r2 F=−16π r2 σT 3

κρ
dT
dr
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Convective zones

Sun

M: total mass; m: mass from 0 to r.
The convective zone in the Sun is large in r, but it is a low-density zone.
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Main Sequence in the H-R diagram

Sun

Most energy 
from CNO

Most energy 
from PP
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Lifetime-mass relationship
in the Main Sequence

● A star can stay in the Main Sequence if:
● It is in hydrostatic equilibrium
● It burns H into He

● How long can it burn H into He? Depends on:
● Amount of H available → mass of the star
● How fast fusion occurs → luminosity
● ⇒ Lifetime ~ mass/luminosity

● Remember: luminosity ~ mass3.5

● ⇒ Lifetime ~ mass-2.5

● Massive (hot) stars live less than light (cold) ones
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Evolution of a Sun-like star (1)
● Steady state in the Main Sequence:

● H is slowly fused into He
● T is too low for He fusion, He accumulates in the core

● At some point, not enough H in the core
● Energy production decreases
● He core starts to contract, liberating potential energy
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Evolution of a Sun-like star (2)
● Star becomes a Red Giant:

● He contraction warms up the core
● This also warms up the H shell around the core
● H fusion rate increases in this shell
● All intermediate layers warm up and expand → giant
● Less surface temperature → red



 19Mercury, Venus and Earth are eaten by the Sun
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Red giants are 
cool but very 
luminous, thanks 
to large radius:

During sub-giant 
phase (~1-2 billion 
years), convection 
brings some of the 
fusion products 
(heavy elements) 
from the core to 
the surface
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Evolution of a Sun-like star (3)
● Helium burning (~20% of star lifetime):

● When core reaches 108 K, He fusion can start
– (Question: why is it larger than for H?)

● Dominant processes:
– Triple-alpha: 4He+4He→8Be followed by 8Be+4He→12C+γ
– Production of Oxigen: 12C+4He→16O+γ
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Helium flash
● Stars with M/M

Sun
>2.25 

have a gradual start of He 
fusion, which then stays 
stable for a while; hydrostatic 
equilibrium prevents runaway

● Instead, for M/M
Sun

< 2.25 
an interesting thing happens: 
for few seconds, local core 
luminosity becomes ~1011L

Sun
 

(but most of it is absorbed 
internally!); in the next slides 
we try to understand why

Flash
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Degenerate gas
● When density is large enough, inter-particle 

interactions and quantum effects cannot be neglected
● ⇒ Perfect gas approximation is not valid

● Here we consider the case of electrons
● Highly ionized gas ⇒ we consider free electrons

● A degenerate gas (or Fermi gas) is composed of 
fermions in identical (= degenerate) quantum states

● Quantum state of a free electron is determined by spin (↑/↓) 
and 6 variables: x,y,z,p

x
,p

y
,p

z
; but remember ∆x∆p

x
~ℏ

● Pauli exclusion principle: maximum one particle per each 
distinguishable state ⇒ 2 electrons per ℏ3 hyper-volume
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When this quantum effect becomes significant, many 
electrons are forced to have a larger momentum than 

expected for an ideal gas
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Why does it give a flash?
● Runaway phenomenon:

● Electrons have a larger average momentum 
(⇒pressure) than for an ideal gas

● Pressure now depends very little on temperature
● As Helium fuses, T increases (⇒more fusion) but P 

is not increasing and it cannot compensate
● ⇒ No hydrostatic equilibrium anymore

● It ends when:
● Temperature becomes so high that quantum effects 

are again negligible
● Core expands ⇒ core less dense, and cooler
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Why not for M/M
Sun

> 2.25?

● A star with mass greater than about 2.25 solar 
masses starts to burn Helium without its core 
becoming degenerate

● Hot enough that He core is never allowed to 
contract to the point of degeneracy

● Exact value of this mass threshold depends on 
"metallicity" (i.e., in astrophysics jargon, the 
fraction of atoms that are not H or He, including 
non-metallic elements)

● (We will not calculate it here, but it can be a 
possible topic for your dissertation)
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What happens next (1)
Horizontal branch star 
(~100 million years)

● Stable combustion of He
 

● Core is not degenerate

● Temperature increases
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What happens next (2)
Thermal pulses:

● ε(3α)~T40

● ⇒ Small perturbations in T 
cause huge differences in 
reaction rate and energy yield

● ⇒ Instability ⇒ pulsation

AGB: Asymptotic Giant Branch; it starts when no more He in core
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What happens next (3)
Thermal pulses:

● O(1000) years: H burning
● O(1) years: He-shell flash
● → Strong expansion
● → stop of H burning
● O(100) years: He burning
● → strong increase in T
● → H burns again

AGB: Asymptotic Giant Branch; it starts when no more He in core
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From early AGB to thermal pulses

Early AGB phase starts at point H: He burning shifts suddenly 
from the core to a shell; H-burning shell extinguishes.
H-burning shell is re-ignited at point J (start of thermal pulses).
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Nucleosynthesis in AGB stars
● Most striking proof of active nucleosynthesis in 

AGB: presence of Technetium, which has no 
stable isotope
● Longest-lived, 99Tc, has a lifetime of 2x105 years

● Main source of neutrons: 13C(α,n)16O reaction
● Then "slow" neutron capture creates heavier 

elements (slow with respect to β-decay)
● This is called "s-process"
● Elements heavier than Fe are created, up to Pb

– Note: Fe is the most stable element; fusion up to Fe 
releases energy, after Fe absorbs energy



 32So now we know why elements up to Pb exist today.
What about elements like U? A bit of patience...
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Planetary nebula

Pulsation causes a strong ejection of mass, which is further 
dispersed by radiation pressure, until all envelope is gone

The remnant is a White Dwarf at the center
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White dwarfs
● All stars with masses up to 8M

Sun
 develop degenerate 

cores and lose their envelopes during the AGB phase
● They all end up as white dwarfs
● Nuclear fusion no longer provides energy
● They shine due to gravitational contraction, cooling at 

almost constant radius and loosing luminosity
● Collapse halts (if M

dwarf
<1.4M

Sun
) because of electron 

degeneration, when R~0.01R
Sun

~R
Earth

● They cool off completely in ~1013 years (notice that 
Universe is ~1010 years old)

● White dwarf properties can be subject of a dissertation
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