Astrophysics and Nuclear Astrophysics (LPHY2263)

Andrea Giammanco, UCL

Academic Year 2015-2016

Chapter #2

- Spectrum
- Spectral type
- Luminosity versus mass

Absorption spectra

Remember the hydrogen atom

Balmer series is in the optical spectrum:

Hα : 6562 Å, Hβ : 4861 Å , Hγ : 4340 Å

Balmer series

 $H\alpha$: 6562 Å, $H\beta$: 4861 Å , $H\gamma$: 4340 Å

- The Balmer series is observable if:
 - There is hydrogen in the photosphere
 - There are enough hydrogen atoms in excited level n=2
- Second point depends on temperature of the photosphere
 - Remember Boltzmann Law

Classification

- First attempt by Edward Pickering:
 - Sort by hydrogen absorption-line strength
 - Type A: strongest H absorption lines, followed by B, C, ...
- Annie Jump Cannon (leader of Pickering's team of "computers") noticed a subtle pattern among metal lines
 - Rearranged Pickering's types, throwing out many as redundant
 - Order now became O, B, A, F, G, K, M
 - (Famous mnemonic trick: *Oh, Be A Fine Girl/Guy, Kiss Me*)
 - Now we know that it is an ordering in temperature
 - O: hottest and most blue; M: coldest and most red

Spectral types

Hertzsprung-Russell diagram

Hertzsprung-Russell diagram

Remember that size can be deduced from $L=4\pi R^2 \sigma T^4$

Hertzsprung-Russell diagram

85% of stars are along the Main Sequence (R ~ 0.1-10 R_{sun})

Luminosity versus mass in the Main Sequence

Assumption: a star is a blob of gas

- Assume a "perfect gas" kept together by gravity
- Perfect Gas Law:
 - Pressure is proportional to density * temperature
 - I.e., compressing the star results in higher P & T
- Gravitational attraction of the gas atoms:
 - Proportional to 1/R²
 - I.e., compressing the star results in stronger binding
- Exact balance: hydrostatic equilibrium

The constant fight between P and G

$$\ddot{r}\Delta m = -\frac{Gm\Delta m}{r^2} + P(r)dS - P(r+dr)dS$$
$$P(r+dr) = P(r) + (\partial P/\partial r)dr$$
$$\Delta m = \rho dr dS$$

The constant fight between P and G

$$\ddot{r}\Delta m = -\frac{Gm\Delta m}{r^2} + P(r)dS - P(r+dr)dS$$

$$P(r+dr) = P(r) + (\partial P/\partial r)dr$$

$$\Delta m = \rho dr dS$$

$$\ddot{r}\Delta m = -\frac{Gm\Delta m}{r^2} - \frac{\partial P}{\partial r}\frac{\Delta m}{\rho} \quad \Rightarrow \quad \ddot{r} = -\frac{Gm}{r^2} - \frac{1}{\rho}\frac{\partial P}{\partial r} \quad (a)$$

$$dr = dm/(4\pi r^2 \rho)$$

$$ds = \frac{Gm\Delta m}{r^2}$$

$$ds = \frac{Gm\Delta m}{r^2}$$

$$ds = \frac{Gm\Delta m}{r^2} = \frac{1}{\rho}\frac{\partial P}{\partial r} \quad (b)$$

The constant fight between P and G

$$\ddot{r} \Delta m = -\frac{Gm\Delta m}{r^2} + P(r)dS - P(r+dr)dS$$

$$\int P(r+dr) = P(r) + (\partial P/\partial r)dr$$

$$\Delta m = \rho dr dS$$

$$\ddot{r} \Delta m = -\frac{Gm\Delta m}{r^2} - \frac{\partial P}{\partial r} \frac{\Delta m}{\rho} \quad \Rightarrow \quad \boxed{\ddot{r} = -\frac{Gm}{r^2} - \frac{1}{\rho} \frac{\partial P}{\partial r}} \quad (a)$$

$$\int dr = dm/(4\pi r^2 \rho)$$

$$\ddot{r} = -\frac{Gm}{r^2} - 4\pi r^2 \frac{\partial P}{\partial m}$$

$$= \operatorname{contraction} \quad \boxed{\frac{dP}{dm} = -\frac{Gm}{4\pi r^4}} \quad (b)$$

$$I6$$

Another way to get there

• Equilibrium means no expansion, no contraction:

$$\frac{dP}{dr} = -\frac{Gm(r)\rho(r)}{r^2} \qquad \text{(from a)}$$

• Integrate from 0 to R to get the average across the star:

$$\langle P \rangle = -\frac{1}{3} \frac{E_{GR}}{V}$$
 (C) (Homework: derive this formula)

• Potential gravitational energy of a spherical mass distribution:

 $E_{GR} = -\frac{3}{5} \frac{GM^2}{R}$ (<u>Homework</u>: derive this formula)

• Substitute this in equation (c) (with V= $4\pi R^3$):

$$\langle P \rangle \approx \frac{GM^2}{4\pi R^4}$$

(d); compare with (b), are they coherent? (<u>Homework</u>)

The mass-luminosity relationship

• Use the ideal gas law (PV=nkT) to solve for T:

$$\langle P \rangle = \frac{\langle \rho \rangle}{\bar{m}} kT$$

$$\Rightarrow kT = \frac{GM\bar{m}}{3R} .$$

- (Here \overline{m} is the average mass of the gas particles in the star)
- Now use the relationship between mass and volume to get R:

$$R = \left(\frac{3}{4}\frac{1}{\rho\pi}M\right)^{\frac{1}{3}}$$

• Put all this in the eq. that we derived in the previous lesson:

$$L = 4\pi R^2 \sigma T_e^4$$

- In the end you find that L is proportional to M^{10/3}, i.e. M^{3.33}, which is very close to the observed relationship M^{3.5}
 - Note: we made many approximations, not valid under all conditions
- This can be used to infer mass from luminosity!

Questions?

Table of main-sequence stellar parameters^[24]

Stellar	Radius	Mass	Luminosity	Temperature	Examples ^[25]
Class	R/R_{\odot}	M/M _☉	L/L _o	к	
06	18	40	500,000	38,000	Theta1 Orionis C
B0	7.4	18	20,000	30,000 Phi ¹ Orionis	
B 5	3.8	6.5	800	16,400 Pi Andromedae A	
A0	2.5	3.2	<mark>80</mark>	10,800 Alpha Coronae Borealis A	
A 5	1.7	2.1	20	8,620 Beta Pictoris	
F0	1.3	1.7	6	7,240 Gamma Virginis	
F5	1.2	1.3	2.5	6,540	Eta Arietis
G0	1.05	1.10	1.26	5,920 Beta Comae Berenices	
G2	1.00	1.00	1.00	5,780 Sun ^[note 2]	
G5	0.93	0.93	0.79	5,610 Alpha Mensae	
K0	0.85	0.78	0.40	5,240 70 Ophiuchi A	
K5	0.74	0.69	0.16	4,410 61 Cygni A ^[26]	
MO	0.63	0.47	0.063	3,920 Gliese 185 ^[27]	
M5	0.32	0.21	0.0079	3,120 EZ Aquarii A	
M8	0.13	0.10	0.0008	2,660 Van Biesbroeck's star ^[28]	

Table from wikipedia

Spectral type, temperature and strength of Balmer's H_{α} line

<i>T_e</i> >25000 K	0	N _a He II
11000 K< T _e <25000 K	B	H _α ∕ He I, He II
7500 K< <i>T_e</i> <11000 K	A	H_{α} max He I
6000 K< T _e <7500 K	F	H _α 🔪 métaux ionisés (CaII)
5000 K< T _e <6000 K	G	H _α ` métaux ionisés et neutres (Soleil : G2)
3500 K< <i>T_e</i> <5000 K	K	H _α métaux ionisés et neutres molécules
2200 K< <i>T_e</i> <3500 K	M	H _a 🔪 métaux ionisés, molécules (TiO)

I: neutral state; II: ionized once