
 AUB HEP Tutorial - January 2020 1

Challenges facing 
CMS data analysis in the 20's

Andrea Giammanco (andrea.giammanco@cern.ch)

Centre for Cosmology, Particle Physics and Phenomenology
Louvain-la-Neuve, Belgium



 2

How do we do that,
in practice?

data knowledge
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Image from http://www.symmetrymagazine.org/article/august-2012/particle-physics-tames-big-data
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Example #1:
finding the tracks of particles
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The CMS inner tracker

● Innermost part of CMS; a cylinder 
of 1.2 m radius (all CMS: 7.5 m)

● Electrically charged particles (and 
only them) give a signal each time 
they cross one of its layers

● Each layer is made of several 
modules, each module has 
hundreds of sensitive units (pixels 
or microstrips) with spatial 
resolution of O(0.1 mm)

● Its volume is only a fraction of all 
CMS, but it dominates the size of 
its raw data with its ~80 millions of 
sensitive units
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Raw data from the tracker

Data-frame; each bin between 
header and tick mark corresponds 

to the position of a strip

Example from one of the two 
technologies employed in the CMS 
tracker (microstrips):

● A block of 128 microstrips is read-
out by a single chip

● This chip sends as output a 
data-frame (see figure)

● Fluctuating part: electronic noise
● Passage of a particle gives a signal 

that sticks out of that noise: a hit
● From then on, we only process the 

hits and ignore other microstrips
● This is a case of data reduction
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More data reduction:
Tracking

Solenoidal field along z: deflection in x-y (or r-f) plane
We sample the trajectory in a discrete number of crossings with 
the detector; from those crossings we must infer the trajectory
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Find the track

Where is the 50 GeV track? (Hint: it is very straight)
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Find the track

These data are from Tevatron, a past accelerator operating at ~1/7 of LHC energy
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Tracking at LHC

LHC achieves large intensities by very dense proton bunches (large 
number of protons, small volume)  several proton-proton 

interactions during each bunch crossing (pileup)
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What we need

● We need track-finding to be efficient
● Ideally, we would like to catch all true tracks

● We need the track sample to be very pure
● Ideally, we would like all tracks that we reconstruct to be 

actual particles (and not fakes, i.e., wrong hit combinations)

● And it has to be fast

● To summarize:
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After local data reduction

We start from a collection of hits, associated to a 
position and an uncertainty
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Seeding

Fast fit to get initial trajectory, trying all combinations of hits in a 
small subset of layers
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Trajectory building

For illustration, let's consider these two seeds and let's see how 
trajectories are built from there.
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Trajectory building

Trajectory is propagated from layer to layer taking into account the 
uncertainties on the hit positions, energy loss, multiple scattering
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Trajectory building
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Trajectory building

When no hits are found, track is probably fake
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Trajectory building
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Trajectory building
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Trajectory building
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Trajectory building

Now we have a track

(Further refinements are applied, but I will not elaborate)
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And then, iterate

N-th step: Remove associated hits: (N+1)-th step:
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The Run II crisis

Trigger timing, 
2016 data

● Run II of LHC (2015-2018): larger 
collision energy (8 TeV  13 TeV) and 
higher collision frequency

● Larger collision energy creates more 
particles per collision

● To reach the desired collision frequency, 
pileup had to increase too  even more 
particles per bunch crossing

● Issue: timing of the "seeding step" 
scales very badly with multiplicity

● Moreover, upgrade in early 2017  one 
more inner layer (from 3 to 4)  more 
combinations  much slower seeding
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The main offender: Seeding

Fast fit to get initial trajectory, trying all combinations of hits in a 
small subset of layers...

Is that the smartest possible way?
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Cellular Automata (CA)

Picture from https://qualityswdev.com/2011/07/31/conways-game-of-life-in-scala/ 

In general, a CA consists of a regular grid 
of cells, each in a finite number of states. 

For each cell, a set of cells called its 
neighborhood is defined. 

An initial state (time t = 0) is selected by 
assigning a state for each cell.

The new state of each cell depends from 
the current states of the cell and its 
neighborhood.

Famous example: Conway's Game of Life

https://qualityswdev.com/2011/07/31/conways-game-of-life-in-scala/
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Cellular Automata (CA)

● Solution for seeding, chosen by CMS starting from 2017 operations
● A graph of all the possible connections between layers is created
● Doublets (“cells”) are created for each pair of layers
● Fast computation of the compatibility between two connected cells
● No knowledge of the world outside adjacent neighboring cells 

required, making it easy to parallelize

Collision region
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Cellular Automata (CA)

Degree of compatibility between hits is checked in r-z and x-y views:

r

z
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Cellular Automata (CA)

● If two cells satisfy all the compatibility 
requirements they are said to be 
neighbors and their state is set to 0

● In the evolution stage, their state 
increases in discrete generations if there 
is an outer neighbor with the same state

● At the end of the evolution stage the 
state of the cells will contain the 
information about the length

● If one is interested in quadruplets, pick a 
state 2 cell and for sure it is the start of a 
chain with at least 4 compatible hits

● [For a N-uplet, pick a state (N-2) cell]
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What we need, and what we got

● We need track-finding to be efficient

● We need the track sample to be very pure

● And it has to be fast
Automaton works well
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And now we can parallelize...

Algorithm Time per event [ms]: 
Average ± root mean square

2016 tracking on 2016 data 29.3 ± 13.1

2016 tracking on 2017 data 72.1 ± 25.7

Cellular Automaton on CPU 14.0 ± 6.2

Cellular Automaton on GPU 1.2 ± 0.9
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CMS Thesis Award 2017

Even in a >3000 members collaboration, individuals can have a 
visible impact and get rewarded for thinking out of the box
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Example #2:
finding the remnants of quarks
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Quarks are always "dressed"

● You can't observe quarks directly

● QCD explanation: the attraction increases with r, so at some 
point the potential energy of the system is larger that 2m

q

Image from Tommaso Dorigo
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From quarks to observable particles

Leading order 
calculation 

(rather easy)
Higher-order 
corrections, 

computationally 
very intense

Here we need 
to cut corners, 

things get 
murky

Here we give up: 
parametrize with 
empirical models 

tuned to data

Final set of stable 
particles that we 
compare to data
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Quarks create "jets"

Illustration credit: Flip Tanedo

Quarks are never naked, but 
we need to undress them
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How to build jets

Illustration credit: Flip Tanedo

Two popular ways:
● Cone-based algorithms:

● Use the highest-energy particles in 
the event as initial seeds

● Sum momenta of all particles in a 
cone of fixed radius around each seed

● Use those sum vectors as new seeds, 
and repeat until convergence

● Clustering algorithms:
● Calculate distances d

ij
 (according to 

some metrics) between particles i and 
j, for all i,j, and distance d

iB
 between 

particle i and the beam axis
● If d

ij
<d

iB
, combine i+j; else, call i a jet
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Infra-red (IR) stability

From G.Salam, arXiv:0906.1833 [hep-ph], Eur.Phys.J.C67 (2010) 637

A jet algorithm is said to be IR-unstable if the addition of a 
low-momentum particle (with arbitrarily low momentum) 
can change the outcome of the jet finding, making the 
theory-experiment comparison quite ill-defined
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Fast and wrong, or right and slow?

● The blue curve is for a 
cone algorithm
● IR-unstable...
● ...but a lot faster

● The black curve is for a 
clustering algorithm
● IR-stable...
● ...but much slower
● Gets worse as N grows: 

finding minimal value of d
ij
, 

d
iB
 for all i,j is a O(N2) 

operation done N times
● (Really?)
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Jet finding with Voronoi cells

M.Cacciari, G.Salam, arXiv:hep-ph/0512210, Phys.Lett.B641 (2006) 57
Making use of work by Dirichlet (1850) and Voronoi (1908)

O(N3) became O(N lnN)

Example of a Paradigm Shift: 
as soon as the authors of that 
paper released their code, 
cone algorithms became a 
thing of the past
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Higher level analysis
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Higher level analysis

● All that we have seen so far is run centrally in CMS

● Now that the complexity of the problem is reduced to a 
small set of jets and other high-level objects (e, m, t, g), you 
can start the very last bit of analysis, e.g., your PhD thesis

● It may look very different, depending on the question you 
want to address, e.g.:

● Search for a new particle, for which you have a model
● Search for new particles, as model-independently as possible
● Measure a certain quantity, and compare it with models
● Measure a certain quantity, for which there is no expectation 

(e.g., a fundamental parameter of Nature)
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Hypothesis testing

● Quantify the agreement of data with a null hypothesis H
0
 

(e.g., the Standard Model)
● In case we only test H

0
, methods may resemble to what is 

elsewhere called Anomaly Detection

● Or quantify which one is best between H
0
 or H

1
, e.g.:

● H
0
 = only backgrounds exist, and behave as in SM

● H
1
 = like H

0
 but also the Higgs exists and behaves as in SM

● Or select which sub-set of {H
i
 } is consistent with data

● {H
i
} is often a continuum, e.g.: m=10.0±1.0 GeV, meaning 

that 9.0<m<11.0 GeV is the 68% confidence interval for m
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Anomaly detection,
the way we prefer it

Dream of every particle physicist:

● Study a simple feature of data, 
e.g., some invariant mass

● Find a spectacular anomaly with a 
clear interpretation, e.g., a peak 
rising from a smooth background

● Get a Nobel Prize

(Or at least get it awarded to your boss, 
or to some theorist who predicted it.)
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Anomaly detection,
the tough way

CMS Collaboration, CMS-PAS-EXO-14-016
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Anomaly detection,
the tough way

CMS Collaboration, CMS-PAS-EXO-14-016

MC: Monte Carlo

(If you don't know 
what s and p-value 
are, just ask, I have 

a backup slide)
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Machine Learning (ML)

● Some particle physicists started using ML techniques in the 90's, 
typically facing resistance by old-schoolers who were afraid of 
delegating physics intuition to „black boxes“

● Nowadays, Neural Networks (NN) and Boosted Decision Trees 
(BDT) are very standard tools, widely used in LHC analyses

● Probably because most „low hanging fruits“ have been reaped 
already, and what remains are the toughest cases

Neural Network: Decision Tree:
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http://www.asimovinstitute.org/neural-network-zoo/
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Deep Learning

● Basic idea: learn multiple levels of representations that 
correspond to different levels of abstraction

● Computationally intensive (which is why it became a thing 
only recently), but suitable for parallelization ( GPUs)

● It is now making its way into the LHC experiments, and 
probably going to replace traditional NN and BDT
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A sad story

● The data analysis in my PhD thesis was based on a NN
● At that time, NN was exotic: an entire chapter was needed
● That chapter ended with a demonstration that More than two 

hidden layers are (...) unnecessary. It didn't age well...
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Supervised vs unsupervised 
learning
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● Supervised learning: iteratively present the algorithm with 
simulated data, for which you already know the truth (target 
value); minimize distance between output and target values
● Regression: target is a continuous distribution
● Classification: target is a finite set of categories; most 

commonly just two: signal vs background
● Unsupervised learning: look for patterns in data
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Most common use case in HEP: 
signal-vs-background classification

Input: some features of the data that discriminate 
between the signal (here the top quark) and the 
sum of all backgrounds Output: a combined discriminant

(signal is red) 

CMS collaboration, Evidence for top quark production in nucleus-nucleus 
collisions, CMS-HIN-19-001
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Classification via image recognition

Mihailo Backovic et al, Playing tag with ANN: boosted top identification with pattern 
recognition, JHEP 1507 (2015) 086

From http://www.quantumdiaries.org/2012/08/05/boost/ 

● At very high momentum, top quark 
decay products form a single jet

● This top-jet tends to have three 
distinct sub-clusters, while normal 
jets tend to be uniform

● What about using digital image 
recognition methods, e.g.:

http://www.quantumdiaries.org/2012/08/05/boost/
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A regression problem

CMS collaboration, A deep neural network for simultaneous estimation of b jet 
energy and resolution, arXiv:1912.06046 [hep-ex]

Result on Higgs mass: 
less bias, better resolution

Target distribution used for the 
training of the DNN

(in simulated events without Higgs)
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Anomaly detection with
Machine Learning (ML)

O. Cerri et al., Variational Autoencoders for New Physics Mining at the Large 
Hadron Collider, arXiv:1811.10276 [hep-ex], JHEP (2019) 36

● A recent paper proposes autoencoders 
(AE) to search for new physics in LHC 
data in a model-independent way

● Training only on background, i.e. 
simulated Standard Model events

● Unsurprisingly, for any specific model a 
traditional BDT (dashed curves) is 
more efficient than AE (solid curves)

● Authors suggest a two-steps strategy: 
catch anomalies at trigger level with 
fast AE, to then characterise with 
dedicated analysis
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Another kind of anomaly detection:
Data Quality Monitoring (DQM)

Pictures from Yandex and IBM speakers at the 
Inter-experimental Machine Learning Working Group Workshop on Machine Learning

Goal: minimize 
grey zone, save 
time of humans

https://indico.cern.ch/event/595059/overview
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Another kind of anomaly detection:
Data Quality Monitoring (DQM)

Goal: minimize 
grey zone, save 
time of humans

M. Borisyak et al., Towards automation of data quality system for CERN CMS 
experiment, arXiv:1709.08607 [physics.data-an]
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Challenges facing 
CMS data analysis in the 20's
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Higher collision rate, more pileup, 
larger accumulated samples...
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...and detectors with
many more channels

Tracker: Its upgrade for Run 4:

Hadron calorimeter: Its endcap's upgrade in Run 4:
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ConclusionConclusion

X
month
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Some of my sources:

● Marco Rovere

● Who clarified the role of CA in CMS tracking and pointed me to 
the Connecting The Dots talks

● Boris Mangano

● Who made the pedagogical cartoons on CMS tracking and 
explained me several practical tracking issues

● Fosco Loregian and Michael Weiss

● Who gave me "math feedback" on an early draft

● I also stole material from the sources acknowledged in my 
slides, plus F. Ragusa, F. Pantaleo, S. Neuhaus, G. Salam, 
M.Kagan
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Statistical significance

● Given some data X and a suitable test statistic T one starts with the p-value, 
i.e. the probability of obtaining a value of T at least as extreme as the one 
observed, if H0 is true.

● p can be converted into the corresponding number of "sigma," i.e. standard 
deviation units from a Gaussian mean. This is done by finding x such that 
the integral from x to infinity of a unit Gaussian N(0,1) equals p:

pdte
x

t


 

2

2

2

1



Slide partially copied from T.Dorigo



 63Myself in 2003. This paragraph didn't age well.
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Hough Transform for tracking
● The methods seen so far are all local: a global fit would be better 

but too slow: very large combinatorics of hits, and very large error 
matrices because errors are correlated across the whole trajectory

● Novel idea: use Hugh Transforms in tracking, following example 
from digital image processing

Points are hits;
Lines are possible 
trajectories;
Dashed line is true one

Points are trajectories;
Point where the lines 
intersect gives the 
best-fit trajectory

Reduce dimensionality 
by binning and choose 
by majority vote
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40 years ago

Image credit: CERN archive
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