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presence of a significant excess at my = 125 GeV in both the 7 and
8 TeV data, The Features of the observed limit are confirmed by the
independent sidehand-background-model and cross-check analy-
ses, The local p-value is shown as a function of my in Fig 2 far
the 7 and 8 TeV data. and for their combination. The expected (ob-

served) local p-value for 2 SM Higgs boson of mass 125 GeV corre

sponds to 2.8(4.1)c., In the sideband- background-model and cross-
check analyses, the observed local p-values for myi = 125 GeV cor-
respond to 45 and 37, respectively. The best-fit signal strength
for a SM Higgs boson mass hypothesis of 125 GeV is a /oy
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arises from 7 + jets and WZ +jets events where jets are misidenti-
fied as leptons, Compared to the analysis reported in Ref. [25], the
present analysis employs improved muen reconstruction, improved
lepton identification and isolation, and 3 kinematic discriminant
exploiting the decay kinematics expected for the signal events. An
algorithm to recover final-state radiation (FSR) photons has also
been deployed.

Electrons are required to have pr =7 GeV and || < 2.5
for muons are pr > 5 GeV and

gven by the statistical methods, it is necessary to take into ac-
count the large differences in the expected signal-to-background
ratios of the event categories shawn in Table 2. The events are
‘weighted acconding to the category in which they fall. A weight
proportional to 5/(5-+ B} is used, as suggested in Ref. [121]. where
5and B are the number of signal and hackground events, respec-
tively, calculated from the simultaneous signal-plus-background fit
tm all categories (with varying overall signal strength) and inte
grating over a 20,y wide window, in each category. centred on
125 GeV. Fig. 3 shows the data, the signal model, and the back-

round model, all weighted, The weights are normalised such that
the integral of the weighted signal model matches the number of
signal events given by the best fit, The urweighted distribution,
using the same binning but in a more restricted mass range. is
shown as an inset. The excess at 125 GeV is evident in both the
‘weighted and unweighted distributions.

S HZ

In the H— ZZ —» 4¢ decay mode 3 search is made for 3 NaFFoW
four-lepton mass peak in the presence of a small continuum back
ground. Early detailed studies outlined the promise of this mode

r 2 wide range of Higgs boson masses [122]. Only the search
in the range 110-160 GeV is reported here. Since there are dif
ferences in the reducible background rates and mass resolutions
between the subchannels 4e. 4ic. and Ze2yz, they are analysed sep-
arately, The hackground sources include an irreducibie four-lepton
contribution from direct ZZ productian via qf and ghuon-gluon
processes. Reducible contributions arise from Z+bb and tf produc-
tion where the final states contain twa isolated leptans and two
b-guark jets producing secondary leptons. Additional background

The
[l = 24, Flectrons are selected using a multivariate identifier
trained using a sample of W+ jets events, and the working point
s optimized using Z + jets events. Both muons and electrons are
required to be isolated. The combined reconstruction and selection
efficiency is measured using electrons and muons in Z boson de-
cays. Muon reconstruction and identification efficiency for muons
with py < 15 GeV is measured using Jj decays

The electron or muon pairs from Z boson decays are required to
originate from the same primary vertex, This is ensured by requir-
ing that the significance of the impact parameter with respect to
the event vertex satisfy |Sp| < 4 for each lepton, where S
1'is the three-dimensional lepton impact parameter at the point of
clasest approach to the vertex. and @) its uncertainty.

Final-state radiation from the leptons is recovered and included
in the computation of the lepton-pair invariant mass, The FSR re-
covery is tuned using simulated samples of ZZ — 4¢ and tested
on data samples of Z boson decays to electrons and muons, Pho-
tons reconstructed within || < 2.4 are considered as possibly due
to FSR The photons must satisfy the following requirements. They
must be within AR < 0.07 of a muon and have pJ = 2 GeV (most
photon showers within this distance of an electron having already
been automatically clustered with the electron shower]: or if their
distance from a lepton is in the range 0.07 < AR < 0.5. they must
satisfy pj =4 GeV, and be isolated within A Such photon
candidates are combined with the lepton if the resulting three-
body invariant mass is less than 100 GeV and closer to the Z bosan
mass than the mass before the addition of the photon.

The event selection requires two pairs of same-flavour. oppa-
sitely charged leptons, The pair with invariant mass closest to the
Z boson mass is required to have 3 mass in the mnge 40-120 GeV
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Example #1:
finding the tracks of particles



The CMS inner tracker

* Innermost part of CMS; a cylinder
of 1.2 m radius (all CMS: 7.5 m)

* Electrically charged particles (and
only them) give a signal each time
they cross one of its layers

« Each layer is made of several
modules, each module has
hundreds of sensitive units (pixels
or microstrips) with spatial
resolution of O(0.1 mm)

* Its volume is only a fraction of all
CMS, but it dominates the size of
its raw data with its ~80 millions of
sensitive units




Raw data from the tracker

Example from one of the two

technologies employed in the CMS

tracker (microstrips):

* A block of 128 microstrips is read-

out by a single chip

 This chip sends as output a

data-frame (see figure)

e Fluctuating part: electronic noise

« Passage of a particle gives a signal
that sticks out of that noise: a hit

 From then on, we only process the
hits and ignore other microstrips

* This is a case of data reduction

ADC counts

1000~ CMS 2008

Digital header Tick mark
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Time (us)
Data-frame; each bin between
header and tick mark corresponds
to the position of a strip



More data reduction:
Tracking

AV AV

Solenoidal field along z: deflection in x-y (or p—¢) plane

We sample the trajectory in a discrete number of crossings with
the detector; from those crossings we must infer the trajectory
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Find the track
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Where is the 50 GeV track? (Hint: it is very straight)




Find the track

ct Aaron Dominguez
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These data are from Tevatron, a past accelerator operating at ~1/7 of LHC energy



Tracking at LHC

CMS Experiment at the LHEC; CERN
: “Data recorded: 2016-Oct-14 09:56:16.733952 GMT
,‘é - I-Run./ Event /LS:283171./.142530805 ./ 254\ ‘
o ~ ~ N N \

LHC achieves large intensities by very dense proton bunches (large

number of protons, small volume) = several proton-proton 10
interactions during each bunch crossing (pileup)




What we need

We need track-finding to be efficient
 |deally, we would like to catch all true tracks
We need the track sample to be very pure

 |deally, we would like all tracks that we reconstruct to be
actual particles (and not fakes, i.e., wrong hit combinations)

And it has to be fast
e TOo summarize:

| want it all, | want it all, | want it

all, and | want it now




After local data reduction
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We start from a collection of hits, associated to a

position and an uncertainty




Seeding

Fast fit to get initial trajectory, trying all combinations of hits in a
small subset of layers
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Trajectory building
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For illustration, let's consider these two seeds and let's see how

trajectories are built from there.



Trajectory building
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Trajectory is propagated from layer to layer taking into account the

uncertainties on the hit positions, energy loss, multiple scattering
15



Trajectory building

16



Trajectory building

When no hits are found, track is probably fake

17



Trajectory building

18



Trajectory building
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Trajectory building
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Trajectory building
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Now we have a track

(Further refinements are applied, but | will not elaborate)

21



And then, iterate

N-th step:

Remove associated hits:

(N+1)-th step:

oy
-
{0
oo
o
D
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The Run |l crisis

Run Il of LHC (2015-2018): larger

collision energy (8 TeV — 13 TeV) and
higher collision frequency

Larger collision energy creates more
particles per collision

To reach the desired collision frequency,

pileup had to increase too — even more
particles per bunch crossing

Issue: timing of the "seeding step"
scales very badly with multiplicity

Moreover, upgrade in early 2017 — one
more inner layer (from 3 to 4) —» more
combinations — much slower seeding
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The main offender: Seeding

—0 OO OO O—
O O OO O——
O—O—O——O—O—O—O~O———

Fast fit to get initial trajectory, trying all combinations of hits in a
small subset of layers...
Is that the smartest possible way?



Cellular Automata (CA)

— In general, a CA consists of a regular grid
— GAMEOF L-|F'-f; i of cells, each in a finite number of states.

For each cell, a set of cells called its
neighborhood is defined.

An initial state (time t = 0) is selected by
assigning a state for each cell.

The new state of each cell depends from
the current states of the cell and its
neighborhood.

Famous example: Conway's Game of Life

25
Picture from https://qualityswdev.com/2011/07/31/conways-game-of-life-in-scala/


https://qualityswdev.com/2011/07/31/conways-game-of-life-in-scala/

Cellular Automata (CA)

Solution for seeding, chosen by CMS starting from 2017 operations
A graph of all the possible connections between layers is created
Doublets (“cells™) are created for each pair of layers

Fast computation of the compatibility between two connected cells

No knowledge of the world outside adjacent neighboring cells
required, making it easy to parallelize
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Cellular Automata (CA)
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Cellular Automata (CA)

* If two cells satisfy all the compatibility
requirements they are said to be
neighbors and their state is setto 0

* In the evolution stage, their state
increases in discrete generations if there
IS an outer neighbor with the same state

» At the end of the evolution stage the
state of the cells will contain the
information about the length

* If one is interested in quadruplets, pick a
state 2 cell and for sure it is the start of a
chain with at least 4 compatible hits

« [For a N-uplet, pick a state (N-2) cell]

28



Tracking efficiency

What we need, and what we got

* We need track-finding to be efficient

* \We need the track sample to be very pure

« And it has to be fast
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And now we can parallelize...

2016 tracking on 2017 data 72.1 £ 25.7

Cellular Automaton on GPU 1.2+0.9

30



CMS Thesis Award 2017

Felice Pantaleo

University of Hamburg
Title: New Track Seeding Techniques for the CMS Experiment

-9 @

Even in a >3000 members collaboration, individuals can have a
visible impact and get rewarded for thinking out of the box



Example #2:
finding the remnants of quarks



Quarks are always "dressed"

e You can't observe quarks directly

 QCD explanation: the attraction increases with r, so at some
point the potential energy of the system is larger that 2m
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Image from Tommaso Dorigo



From quarks to observable particles
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(rather easy) corrections, to cut corners, parametrize with
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Quarks create "jets"

Quarks are never naked, but
we need to undress them

b

F' \/
p Jets make this

corresp ondence

I

'
What we calculate

lllustration credit: Flip Tanedo

What we measure

35



How to build jets

Two popular ways:

 Cone-based algorithms:

» Use the highest-energy particles in
the event as initial seeds

 Sum momenta of all particles in a
cone of fixed radius around each seed

Hadrons are

clustered  Use those sum vectors as new seeds,
bogethenio and repeat until convergence
make jets

» Clustering algorithms:
« Calculate distances dij (according to

some metrics) between particles i and
J, for all i,j, and distance d_ between

particle i and the beam axis
o If dij<diB, combine i+j; else, call | a jet

lllustration credit: Flip Tanedo 36



Infra-red (IR) stability

“—— soft divergence —

W
(c)

From G.Salam, arXiv:0906.1833 [hep-ph], Eur.Phys.J.C67 (2010) 637

A jet algorithm is said to be IR-unstable if the addition of a
low-momentum particle (with arbitrarily low momentum)
can change the outcome of the jet finding, making the
theory-experiment comparison quite ill-defined

37



Fast and wrong, or right and slow?

S o~  The blue curve is for a
| o musaooo) | cone algorithm
R e IR-unstable...
o ...but a lot faster
 The black curve is for a
clustering algorithm

_ e |[R-stable...
o4 Lo e Lo e e ...but much slower
I evaitron n irac IOI'I} n EF?C IOI'IS) eavy lon ] ° Gets Worse aS N grOWS:
105 A L UV R S finding minimal value of d ,
10° 10° 10% 10° !

N d_ forallijis a O(N°)
operation done N times
e (Really?)
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Jet finding with Voronoi cells

Figure 1: The Voronoi diagram for ten random points. The Delaunay triangulation (red)
connecting the ten points is also shown. In this example the points 1, 4, 2. 8 and 3 are the
“Voronoi” neighbours of 7, and 3 is its nearest neighbour.

M.Cacciari, G.Salam, arXiv:hep-ph/0512210, Phys.Lett.B641 (2006) 57
Making use of work by Dirichlet (1850) and Voronoi (1908)
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Higher level analysis

40



Higher level analysis

 All that we have seen so far is run centrally in CMS

* Now that the complexity of the problem is reduced to a

small set of jets and other high-level objects (e, y, t, v), you
can start the very last bit of analysis, e.g., your PhD thesis

* |t may look very different, depending on the question you
want to address, e.g.:

« Search for a new particle, for which you have a model
« Search for new particles, as model-independently as possible
 Measure a certain quantity, and compare it with models

« Measure a certain quantity, for which there is no expectation
(e.g., a fundamental parameter of Nature)

41



Hypothesis testing

- Quantify the agreement of data with a null hypothesis H_

(e.g., the Standard Model)
- In case we only test H , methods may resemble to what is
elsewhere called Anomaly Detection

« Or quantify which one is best between H or H , e.g.:

. H_ = only backgrounds exist, and behave as in SM

- H =like H but also the Higgs exists and behaves as in SM
» Or select which sub-set of {H. } is consistent with data

. {H} is often a continuum, e.g.: m=10.0+1.0 GeV, meaning
that 9.0<m<11.0 GeV is the 68% confidence interval for m

42



Anomaly detection,
the way we prefer it

N Dream of every particle physicist:

« Study a simple feature of data,
e.g., some invariant mass

* Find a spectacular anomaly with a
clear interpretation, e.g., a peak
rising from a smooth background

 Get a Nobel Prize

(Or at least get it awarded to your boss,
or to some theorist who predicted it.)

43



Anomaly detection,

the tough way
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Figure 2: The 50 most significant exclusive event classes, considering only the total number of
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events.

CMS Collaboration, CMS-PAS-EXO-14-016



Anomaly detection,

the tough way

CMS Preliminary 19.7 1 (8 TeV)
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Figure 5: Distribution of p-values for exclusive event classes in the scan of total event yield.
Black markers represent the measured data compared to the SM MC expectation. The his-
togram labeled "MC vs. MC” represents the comparison of the SM MC expectation to pseudo-
data generated under the SM-only hypothesis. As a further comparison, the expectation from
the uniform distribution is given, where the individual components are explained in Sec. 3.5.
[ the Tirst bin 148 distributions are observed Jwith 13972(10) ") (20) expected from the SM. 45

CMS Collaboration, CMS-PAS-EXO-14-016



Machine Learning (ML)

Neural Network:

Input Hidden Output
layer layer layer

Decision Tree:

s / ) [ ;

Input # 1+ oal

Output
Input #3 0.6
4
Input #4 o(x) = sigmoid function 0.4
~ is the Activation Function 02
X = Input vector e “| ,
I z=o0(Wzx+b) ‘ RV AR

0

* - ] -
A o
Csick ) ( healihy ) 0 0.2 0.4 0.6 0.8
W X1

« Some particle physicists started using ML techniques in the 90's,
typically facing resistance by old-schoolers who were afraid of
delegating physics intuition to ,black boxes”

 Nowadays, Neural Networks (NN) and Boosted Decision Trees
(BDT) are very standard tools, widely used in LHC analyses

* Probably because most ,low hanging fruits® have been reaped
already, and what remains are the toughest cases 46
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A mostly complete chart of
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Al

O 0 O

Deconvolutional Network (DN) Deep Convolutional Inverse Graphics Network (DCIGN)
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Generative Adversarial Network (GAN) Liquid State Machine (LSM)  Extreme Learning Machine (ELM)
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Deep Residual Network (DRN) Kohonen Network (KN)  Support Vector Machine (SVM)  Neural Turing Machine (NTM)
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Deep Learning

) hidden layer 1  hidden laver 2 hidden layer 3
input layer
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» Basic idea: learn multiple levels of representations that
correspond to different levels of abstraction

« Computationally intensive (which is why it became a thing
only recently), but suitable for parallelization (= GPUs)

* It is now making its way into the LHC experiments, and
probably going to replace traditional NN and BDT
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A sad story

Chapter 5

ScuoLa NORMALE SUPERIORE

Neural Networks

Tesi di Perfezionamento in Fisica
Neural networks [75, 76, 77, 78] (NN} are a powerful tool for pattern recognition, and are
widely applied in several fields, ranging from financial predictions to weather forecasts
to character recognition. In particle physies they are mostly used for event or particle
A measurement of the Gluon I
classification tasks.
Splitting Rate into c¢ Pairs The analysis
. " . 0 z the g — cf events from the backgrounds.
in Hadronic Z" Decays
with the ALEPH detector 5.1 What is a Neural Network

Several definitions exist of what is meant by “neural network”. One of the most agreed

ribed in this dissertation makes use of a neural network to separate

on is the following [76]

A neural network is an interconnected assembly of simple processing elements, units
or nodes, whose functionality is loosely based on the animal newron. The processing
ability of the network is stored in the inter-unit connection strengths, or weights, obtained
by a process of adaptation to, or learning from, a set of training patterns.

The “neuron” is the undamental processing element of a neural network. It takes its

on in the brain.

. ) name from the analogy with the eells responsible of signal transn
Candidate Supervisor . . R .
The information processing performed by the real (biological) neuron may be crudely

Andrea Giammanco Prof. Lorenzo Foa ) . . ) B .

summarized as follows: it receives inputs from other neurons (or from the surrounding
environment), combines them in some way, performs a generally non-linear operation on
the result, and then outputs the final result. The artificial neuron mimics the real one by
multiplying the input values by some number or weight to indicate the strength of the link
(the “synapse”, following the biological similitude); the weighted signals are then summed
Ph.D. Thesis to produce an overall unit activation. If this activation exceeds a certain threshold the

Pisa, April 2003
83

* The data analysis in my PhD thesis was based on a NN

« At that time, NN was exotic: an entire chapter was needed

« That chapter ended with a demonstration that More than two 4
hidden layers are (...) unnecessary. It didn't age well...



Supervised vs unsupervised
learning

r i

2 : CLASSIFICATION
SUPERVISED L )
LEARNING
Develop predictive
model based an both -
input and output doto
5 4 REGRESSION

MACHINE LEARNING L )

! UNSUPERVISED | ,, 3
LEARNING L CLUSTERING

Group ond interpret
dota bosed only L )
on input data
. A

* Supervised learning: iteratively present the algorithm with
simulated data, for which you already know the truth (target
value); minimize distance between output and target values

* Regression: target is a continuous distribution

 Classification: target is a finite set of categories; most
commonly just two: signal vs background

 Unsupervised learning: look for patterns in data

50
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Most common use case in HEP:
sighal-vs-background classification

CMS Preliminary 1.7 nb™" ('5,,=5.02 TeV)

-.g - ey { Data Bt
S - Y mtw
5 £ w - [ IJNonprompt []Z/y*
g g 30 B5 Total unc.
% ‘ % :E:;:E
24 g 'oumammzmzzo g 20
Pl (Gev]
: ] .10
g I Iy
i 815
. [ ST S |
8 O'c5)0
(U ! ! 1 1
. =) 0.2 0.4 0.6 0.8 1
Input: some features of the data that discriminate BDT
between the signal (here the top quark) and the _ .
sum of all backggrou(nds P ) Output: a combined discriminant
(signal is red)
CMS collaboration, Evidence for top quark production in nucleus-nucleus 51

collisions, CMS-HIN-19-001



Classification via image recognition

P on iy » At very high momentum, top quark
decay products form a single jet

* This top-jet tends to have three

Low top pt

boost
distinct sub-clusters, while normal
jets tend to be uniform
N  What about using digital image
From http://www.quantumdiaries.org/2012/08/05/boost/ ..
recognition methods, e.g.:
- Bias r,mdes L 10° Mistag Rate vs Efficiency
% 10 et Madgraphb 4 Pythia
fi e g nti — kp, R = 1.0
> g 23 pr = 500 — 600 GeV
.‘Eﬂ 102 / n = 130 — 210 GeV
/ C > | === NNs tagger
== N-subjettiness
. === Top template tagger
! diy
Calorimeter image Input layer Hidden layer 1 Hidden layer 2  Output layer 10'305 03 03 06 08 1.0
Top Tag Efficiency
52

Mihailo Backovic et al, Playing tag with ANN: boosted top identification with pattern
recognition, JHEP 1507 (2015) 086
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A regression problem

(13 TeV) (13 TeV)
3 [T TT | T T | rTT | FTT | T T T T T TT | T Ill T 1] % l T I T 17T I T 17T I T 17T I T T T 17T I T T I T T I T
C - CMS Simulation tt i O 5L CMS Simulation N
2 o1 . 0o )
o - 7 : o [ :
5 - /;g | 2T DNN il
o L % 4 S g4 _|
GNJ 0.08- 7 — LI T u=1246GeV i
— 4 7 - c =154 GeV N
CU B 7 7 L |
& i g;/// 7 7 3— —— Baseline —
o 006 B i uw=115.9 GeV i
Z i / : - o =18.0 GeV .
0041 - . a3 E
0.02 - I J E
Lol b 4 I/]//Eél/l 1#%%1 (i /)f LA Y el i 0_1 M ﬁ [ B RN RN RN ANEN A AR f’]
0 02 04 06 08 1 1.2 1.4 1er§ 18 2 0 20 40 60 80 100 120 140 160
pg /P m, (GeV)
Target distribution used for the Result on Higgs mass:
training of the DNN less bias, better resolution
(in simulated events without Higgs)
CMS collaboration, A deep neural network for simultaneous estimation of b jet 33

energy and resolution, arXiv:1912.06046 [hep-ex]



Anomaly detection with
Machine Learning (ML)

* Arecent paper proposes autoencoders |
(AE) to search for new physics in LHC T
data in a model-independent way 0~

 Training only on background, i.e. I
simulated Standard Model events

« Unsurprisingly, for any specific model a

gty
-
-
-~

=
(@)
I

%)

A-4f
AUC = 0.91 (0.98)
LQ

BSM efficiency
=
|

traditional BDT (dashed curves) is R o T
more efficient than AE (solid curves) i _ | e

« Authors suggest a two-steps strategy: A | e 600 28 sl
catch anomalies at trigger level with UL U o BT 0w
fast AE, to then characterise with
dedicated analysis

O. Cerri et al., Variational Autoencoders for New Physics Mining at the Large >4

Hadron Collider, arXiv:1811.10276 [hep-ex], JHEP (2019) 36



Another kind of anomaly detection:
Data Quality Monitoring (DQM)

——— "d.;xpe& e
3 \ ecision e
i < e Goal: minimize
akssiciad grey zone, save

- . 5 .
Cut “bad” Cut "good” time of humans

g
—-.

Wi ibim . comyfstan "iF_,-l;:ﬂ* solutions start here

Case Study: IBM-CERN “Nitro-DQM” PoC
Use the IBM Cloud to develop, train, test the NN model

LHC CMS IBM Analytic
e, Services incl. pam
(i : Apache Spark Analytics &

Recommendations

E IBM Relational & =
: { Object Store } IBM DSX LJU
2 : 1Py

DQ classification

CERN archives of DOM (Step2: Migrate the :
data — both certified model on-prem for IBM
and anomalous real-time testing) DLaaS
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Pictures from Yandex and IBM speakers at the

Inter-experimental Machine Learning Working Group Workshop on Machine Learning


https://indico.cern.ch/event/595059/overview

Another kind of anomaly detection:
Data Quality Monitoring (DQM)
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M. Borisyak et al., Towards automation of data quality system for CERN CMS
experiment, arXiv:1709.08607 [physics.data-an]

Goal: minimize
grey zone, save
time of humans
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Challenges facing
CMS data analysis in the 20's



Higher collision rate, more pileup,
larger accumulated samples...

e Peak luminosity =Integrated luminosity
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.and detectors with
many more channels

Tracker: Its upgrade for Run 4:
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Some of my sources:

Marco Rovere

« Who clarified the role of CA in CMS tracking and pointed me to
the Connecting The Dots talks

Boris Mangano

 Who made the pedagogical cartoons on CMS tracking and
explained me several practical tracking issues

Fosco Loregian and Michael Weiss
 Who gave me "math feedback" on an early draft

| also stole material from the sources acknowledged in my
slides, plus F. Ragusa, F. Pantaleo, S. Neuhaus, G. Salam,
M.Kagan
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Statistical significance

« Given some data X and a suitable test statistic T one starts with the p-value
I.e. the probability of obtaining a value of T at least as extreme as the one
observed, if HO is true.

e p can be converted into the corresponding number of "sigma," i.e. standard
deviation units from a Gaussian mean. This is done by finding x such that
the integral from x to infinity of a unit Gaussian N(0,1) equals p:

Slide partially copied from T.Dorigo
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Figure 5.3: (a) Linearly separable problem, (b) non-linearly separable problem, (¢) non-
linearly separable problem with a closed contour.

Fig. 5.3b shows an example of “non-linearly separable problem”: no straight line
can properly separate the two categories of events. The introduction of a hidden layer
overcomes the problem [83]. Intuitively, dividing the neurons in the hidden layer in two
independent sub-groups, each one can be used by the net to find a straight line which
confines all of the “B” events on one side, even if this means to have also a lot of “A” events
on the same side. Working independently, the two groups will find. in general, different
lines which obtain the same result in different ways; the neuron on the output layer can
then make use of both the results. Other decision surfaces having more complex shapes
can need more sub-groups, and so more units in the hidden layers, to be approximated.
Problems with higher complexity (like the closed contour in Fig. 5.3¢) can be better
approximated with the help of a second hidden layer [84]. More than two hidden layers

are shown to be unnecessary [77].

Myself in 2003. This paragraph didn't age well.
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Hough Transform for tracking

 The methods seen so far are all local: a global fit would be better
but too slow: very large combinatorics of hits, and very large error
matrices because errors are correlated across the whole trajectory

* Novel idea: use Hugh Transforms in tracking, following example
from digital image processing

geometrical space parameter space
.\ A 3 _
= P i -
— . = =
m) ety oo meb U
m e - .
* N0 -
o |\, B
e® I %
' Q - m
Points are hits; Points are trajectories; Reduce dimensionality
Lines are possible Point where the lines by binning and choose
trajectories; intersect gives the by majority vote

Dashed line is true one best-fit trajectory



Image credit: CERN archive

40 years ago
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